The Influence of Microstructure on Boundary Layer Interactions in Ionic Polymer Transducers

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Goulbourne, Nakhiah C.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Applied Mechanics. World Scientific. 2012, 03(02), pp. 365-384. ISSN 1758-8251. eISSN 1758-826X. Available under: doi: 10.1142/S1758825111001032
Zusammenfassung

Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites (IPMCs), are smart sensors and actuators which operate through a coupling of micro-scale chemical, mechanical, and electrical interactions. It is known that ion movement, when a voltage is applied, causes stresses which lead to a net bending movement of a cantilevered transducer towards the anode. However, it is not well understood how these stresses arise, and it is not known how the material microstructure affects the observed macroscopic bending response. In this work, we apply a micromechanics modeling framework to analyze how assumptions of the material microstructure of an IPT affect local interactions and the resulting boundary layer stresses which lead to actuation. In the micromechanics framework, local equilibrium consists of a balance between internal cluster pressure and the stress developed in the polymer backbone. Here, we derive a generalized expression for the electrostatic cluster pressure and show how it depends on microstructure and microstructural evolution in the boundary layers. It is proposed that the boundary layer stiffness varies locally with changes in solvent uptake and charge density; this relationship is defined from micromechanics equilibrium conditions and includes effects of the generalized electrostatic cluster pressure. By assuming a relationship between ion and solvent movement, we then examine how boundary layer stresses are affected by assumptions of the material microstructure. The results and implications of the model are compared with recent experimental observations as well as other models of IPT actuation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Ionic polymer transducers, ionic polymer-metal composites, micromechanics
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690DAVIDSON, Jacob D., Nakhiah C. GOULBOURNE, 2012. The Influence of Microstructure on Boundary Layer Interactions in Ionic Polymer Transducers. In: International Journal of Applied Mechanics. World Scientific. 2012, 03(02), pp. 365-384. ISSN 1758-8251. eISSN 1758-826X. Available under: doi: 10.1142/S1758825111001032
BibTex
@article{Davidson2012-04-05Influ-50957,
  year={2012},
  doi={10.1142/S1758825111001032},
  title={The Influence of Microstructure on Boundary Layer Interactions in Ionic Polymer Transducers},
  number={02},
  volume={03},
  issn={1758-8251},
  journal={International Journal of Applied Mechanics},
  pages={365--384},
  author={Davidson, Jacob D. and Goulbourne, Nakhiah C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50957">
    <dcterms:title>The Influence of Microstructure on Boundary Layer Interactions in Ionic Polymer Transducers</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T09:43:09Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50957"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T09:43:09Z</dc:date>
    <dc:creator>Goulbourne, Nakhiah C.</dc:creator>
    <dcterms:issued>2012-04-05</dcterms:issued>
    <dc:creator>Davidson, Jacob D.</dc:creator>
    <dc:contributor>Davidson, Jacob D.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites (IPMCs), are smart sensors and actuators which operate through a coupling of micro-scale chemical, mechanical, and electrical interactions. It is known that ion movement, when a voltage is applied, causes stresses which lead to a net bending movement of a cantilevered transducer towards the anode. However, it is not well understood how these stresses arise, and it is not known how the material microstructure affects the observed macroscopic bending response. In this work, we apply a micromechanics modeling framework to analyze how assumptions of the material microstructure of an IPT affect local interactions and the resulting boundary layer stresses which lead to actuation. In the micromechanics framework, local equilibrium consists of a balance between internal cluster pressure and the stress developed in the polymer backbone. Here, we derive a generalized expression for the electrostatic cluster pressure and show how it depends on microstructure and microstructural evolution in the boundary layers. It is proposed that the boundary layer stiffness varies locally with changes in solvent uptake and charge density; this relationship is defined from micromechanics equilibrium conditions and includes effects of the generalized electrostatic cluster pressure. By assuming a relationship between ion and solvent movement, we then examine how boundary layer stresses are affected by assumptions of the material microstructure. The results and implications of the model are compared with recent experimental observations as well as other models of IPT actuation.</dcterms:abstract>
    <dc:contributor>Goulbourne, Nakhiah C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Unbekannt
Diese Publikation teilen