On the definability of radicals in supersimple groups
Lade...
Dateien
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
The Journal of Symbolic Logic. 2014, 78(02), pp. 649-656. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.2178/jsl.7802160
Zusammenfassung
If G is a group with supersimple theory having finite SU-rank, the subgroup of G generated by all of its normal nilpotent subgroups is definable and nilpotent. This answers a question asked by Elwes, Jaligot, Macpherson and Ryten. If H is any group with supersimple theory, the subgroup of H generated by all of its normal solvable subgroups is definable and solvable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Supersimple group, Fitting subgroup, soluble radical
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MILLIET, Cedric, 2014. On the definability of radicals in supersimple groups. In: The Journal of Symbolic Logic. 2014, 78(02), pp. 649-656. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.2178/jsl.7802160BibTex
@article{Milliet2014defin-26611, year={2014}, doi={10.2178/jsl.7802160}, title={On the definability of radicals in supersimple groups}, number={02}, volume={78}, issn={0022-4812}, journal={The Journal of Symbolic Logic}, pages={649--656}, author={Milliet, Cedric} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26611"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26611/2/Milliet_266117.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26611"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:bibliographicCitation>The Journal of Symbolic Logic ; 78 (2013), 2. - S. 649-656</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">If G is a group with supersimple theory having finite SU-rank, the subgroup of G generated by all of its normal nilpotent subgroups is definable and nilpotent. This answers a question asked by Elwes, Jaligot, Macpherson and Ryten. If H is any group with supersimple theory, the subgroup of H generated by all of its normal solvable subgroups is definable and solvable.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26611/2/Milliet_266117.pdf"/> <dcterms:title>On the definability of radicals in supersimple groups</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-04T09:27:28Z</dcterms:available> <dc:contributor>Milliet, Cedric</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-04T09:27:28Z</dc:date> <dc:creator>Milliet, Cedric</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja