On the definability of radicals in supersimple groups
On the definability of radicals in supersimple groups
Loading...
Date
2014
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
The Journal of Symbolic Logic ; 78 (2014), 02. - pp. 649-656. - ISSN 0022-4812. - eISSN 1943-5886
Abstract
If G is a group with supersimple theory having finite SU-rank, the subgroup of G generated by all of its normal nilpotent subgroups is definable and nilpotent. This answers a question asked by Elwes, Jaligot, Macpherson and Ryten. If H is any group with supersimple theory, the subgroup of H generated by all of its normal solvable subgroups is definable and solvable.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Supersimple group,Fitting subgroup,soluble radical
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
MILLIET, Cedric, 2014. On the definability of radicals in supersimple groups. In: The Journal of Symbolic Logic. 78(02), pp. 649-656. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.2178/jsl.7802160BibTex
@article{Milliet2014defin-26611, year={2014}, doi={10.2178/jsl.7802160}, title={On the definability of radicals in supersimple groups}, number={02}, volume={78}, issn={0022-4812}, journal={The Journal of Symbolic Logic}, pages={649--656}, author={Milliet, Cedric} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26611"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26611/2/Milliet_266117.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26611"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:bibliographicCitation>The Journal of Symbolic Logic ; 78 (2013), 2. - S. 649-656</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">If G is a group with supersimple theory having finite SU-rank, the subgroup of G generated by all of its normal nilpotent subgroups is definable and nilpotent. This answers a question asked by Elwes, Jaligot, Macpherson and Ryten. If H is any group with supersimple theory, the subgroup of H generated by all of its normal solvable subgroups is definable and solvable.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26611/2/Milliet_266117.pdf"/> <dcterms:title>On the definability of radicals in supersimple groups</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-04T09:27:28Z</dcterms:available> <dc:contributor>Milliet, Cedric</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-04T09:27:28Z</dc:date> <dc:creator>Milliet, Cedric</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes