Publikation: On asymptotically optimal wavelet estimation of trend functions under long-range dependence
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bernoulli. 2012, 18(1), pp. 137-176. ISSN 1350-7265. Available under: doi: 10.3150/10-BEJ332
Zusammenfassung
We consider data-adaptive wavelet estimation of a trend function in a time series model with strongly dependent Gaussian residuals. Asymptotic expressions for the optimal mean integrated squared error and corresponding optimal smoothing and resolution parameters are derived. Due to adaptation to the properties of the underlying trend function, the approach shows very good performance for smooth trend functions while remaining competitive with minimax wavelet estimation for functions with discontinuities. Simulations illustrate the asymptotic results and finite-sample behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
long-range dependence, mean integrated squared error, nonparametric regression, thresholding, trend estimation, wavelet
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Yevgen SHUMEYKO, 2012. On asymptotically optimal wavelet estimation of trend functions under long-range dependence. In: Bernoulli. 2012, 18(1), pp. 137-176. ISSN 1350-7265. Available under: doi: 10.3150/10-BEJ332BibTex
@article{Beran2012asymp-23239, year={2012}, doi={10.3150/10-BEJ332}, title={On asymptotically optimal wavelet estimation of trend functions under long-range dependence}, number={1}, volume={18}, issn={1350-7265}, journal={Bernoulli}, pages={137--176}, author={Beran, Jan and Shumeyko, Yevgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23239"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Beran, Jan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T07:29:27Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Shumeyko, Yevgen</dc:creator> <dcterms:abstract xml:lang="eng">We consider data-adaptive wavelet estimation of a trend function in a time series model with strongly dependent Gaussian residuals. Asymptotic expressions for the optimal mean integrated squared error and corresponding optimal smoothing and resolution parameters are derived. Due to adaptation to the properties of the underlying trend function, the approach shows very good performance for smooth trend functions while remaining competitive with minimax wavelet estimation for functions with discontinuities. Simulations illustrate the asymptotic results and finite-sample behavior.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23239"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T07:29:27Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2012</dcterms:issued> <dc:contributor>Beran, Jan</dc:contributor> <dc:contributor>Shumeyko, Yevgen</dc:contributor> <dcterms:bibliographicCitation>Bernoulli ; 18 (2012), 1. - S. 137-176</dcterms:bibliographicCitation> <dcterms:title>On asymptotically optimal wavelet estimation of trend functions under long-range dependence</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja