Publikation:

E-validation : Unleashing AI for validation

Lade...
Vorschaubild

Dateien

Hartung_2-dyyucqfjalya6.pdf
Hartung_2-dyyucqfjalya6.pdfGröße: 1.34 MBDownloads: 19

Datum

2024

Autor:innen

Maertens, Alexandra
Luechtefeld, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

European Union (EU): 963845

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. ALTEX Edition. 2024, 41(4), S. 567-587. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2409211

Zusammenfassung

The validation of new approach methods (NAMs) in toxicology faces significant challenges, including the integration of diverse data, selection of appropriate reference chemicals, and lengthy, resource-intensive consensus processes. This article proposes an artificial intelligence (AI)-based approach, termed e-validation, to optimize and accelerate the NAM validation process. E-vali­dation employs advanced machine learning and simulation techniques to systematically design validation studies, select informative reference chemicals, integrate existing data, and provide tailored training. The approach aims to shorten current decade-long validation timelines, using fewer resources while enhancing rigor. Key components include the smart selection of reference chemicals using clustering algorithms, simulation of validation studies, mechanistic validation powered by AI, and AI-enhanced training for NAM education and implementation. A centralized dashboard interface could integrate these components, streamlining workflows and providing real-time decision support. The potential impacts of e-validation are extensive, promising to accel­erate biomedical research, enhance chemical safety assessment, reduce animal testing, and drive regulatory and commercial innovation. While the integration of AI and machine learning offers sig­nificant advantages, challenges related to data quality, complexity of implementation, scalability, and ethical considerations must be addressed. Real-world validation and pilot studies are crucial to demonstrate the practical benefits and feasibility of e-validation. This transformative approach has the potential to revolutionize toxicological science and regulatory practices, ushering in a new era of predictive, personalized, and preventive health sciences.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTUNG, Thomas, Alexandra MAERTENS, Thomas LUECHTEFELD, 2024. E-validation : Unleashing AI for validation. In: Alternatives to Animal Experimentation : ALTEX. ALTEX Edition. 2024, 41(4), S. 567-587. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2409211
BibTex
@article{Hartung2024Evali-71855,
  title={E-validation : Unleashing AI for validation},
  year={2024},
  doi={10.14573/altex.2409211},
  number={4},
  volume={41},
  issn={1868-596X},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={567--587},
  author={Hartung, Thomas and Maertens, Alexandra and Luechtefeld, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71855">
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71855/1/Hartung_2-dyyucqfjalya6.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71855"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:53:16Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71855/1/Hartung_2-dyyucqfjalya6.pdf"/>
    <dcterms:title>E-validation : Unleashing AI for validation</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:abstract>The validation of new approach methods (NAMs) in toxicology faces significant challenges, including the integration of diverse data, selection of appropriate reference chemicals, and lengthy, resource-intensive consensus processes. This article proposes an artificial intelligence (AI)-based approach, termed e-validation, to optimize and accelerate the NAM validation process. E-vali­dation employs advanced machine learning and simulation techniques to systematically design validation studies, select informative reference chemicals, integrate existing data, and provide tailored training. The approach aims to shorten current decade-long validation timelines, using fewer resources while enhancing rigor. Key components include the smart selection of reference chemicals using clustering algorithms, simulation of validation studies, mechanistic validation powered by AI, and AI-enhanced training for NAM education and implementation. A centralized dashboard interface could integrate these components, streamlining workflows and providing real-time decision support. The potential impacts of e-validation are extensive, promising to accel­erate biomedical research, enhance chemical safety assessment, reduce animal testing, and drive regulatory and commercial innovation. While the integration of AI and machine learning offers sig­nificant advantages, challenges related to data quality, complexity of implementation, scalability, and ethical considerations must be addressed. Real-world validation and pilot studies are crucial to demonstrate the practical benefits and feasibility of e-validation. This transformative approach has the potential to revolutionize toxicological science and regulatory practices, ushering in a new era of predictive, personalized, and preventive health sciences.</dcterms:abstract>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:53:16Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen