Publikation:

Breaking a Virus : Identifying Molecular Level Failure Modes of Viral Capsid Compression through Multi-Scale Simulation Techniques

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Krishnamani, Venkatramanan
Deserno, Markus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Biophysical Journal. 2014, 106(2, Suppl. 1), pp. 61a-62a. ISSN 0006-3495. eISSN 1542-0086. Available under: doi: 10.1016/j.bpj.2013.11.419

Zusammenfassung

We use a systematically coarse-grained model for the protein capsid of Cowpea Chlorotic Mottle Virus (CCMV) to study its deformation under uniaxial compression, all the way from its initial elastic response to the capsid's ultimate structural failure. Our model amends the MARTINI force field with an iteratively refined elastic network, and we have previously shown that it reproduces the fluctuations of small fragments as well as the large-scale stress-strain response.

We developed an automated identification method that classifies the contacting protein interfaces in the CCMV capsid into symmetry-classes and characterizes their structural changes upon deformation in residue-level detail. We observed that the symmetry-classes differ markedly in their stability, in a way that appears to backtrack the putative assembly pathway: interfaces that are believed to form last are most likely to break first. For instance, neither protein dimers (the first assembly step) nor pentamers of dimers (the second step) were ever seen to fail, while the hexameric association site (presumably the last to form) ruptures most readily. Interestingly, the wild type capsid fortifies this location with a cooperatively formed 6-stranded beta-barrel motif, which is missing in the mutant we employed in our studies. We hypothesize that interfacial binding strengths regulate the assembly order, but that later (and hence weaker) contacts may be reinforced by cooperative motifs that form post-assembly.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRISHNAMANI, Venkatramanan, Christoph GLOBISCH, Christine PETER, Markus DESERNO, 2014. Breaking a Virus : Identifying Molecular Level Failure Modes of Viral Capsid Compression through Multi-Scale Simulation Techniques. In: Biophysical Journal. 2014, 106(2, Suppl. 1), pp. 61a-62a. ISSN 0006-3495. eISSN 1542-0086. Available under: doi: 10.1016/j.bpj.2013.11.419
BibTex
@article{Krishnamani2014Break-30160,
  year={2014},
  doi={10.1016/j.bpj.2013.11.419},
  title={Breaking a Virus : Identifying Molecular Level Failure Modes of Viral Capsid Compression through Multi-Scale Simulation Techniques},
  number={2, Suppl. 1},
  volume={106},
  issn={0006-3495},
  journal={Biophysical Journal},
  pages={61a--62a},
  author={Krishnamani, Venkatramanan and Globisch, Christoph and Peter, Christine and Deserno, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30160">
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:contributor>Deserno, Markus</dc:contributor>
    <dcterms:title>Breaking a Virus : Identifying Molecular Level Failure Modes of Viral Capsid Compression through Multi-Scale Simulation Techniques</dcterms:title>
    <dc:creator>Deserno, Markus</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Krishnamani, Venkatramanan</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Globisch, Christoph</dc:creator>
    <dc:contributor>Krishnamani, Venkatramanan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T15:48:19Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30160"/>
    <dcterms:abstract xml:lang="eng">We use a systematically coarse-grained model for the protein capsid of Cowpea Chlorotic Mottle Virus (CCMV) to study its deformation under uniaxial compression, all the way from its initial elastic response to the capsid's ultimate structural failure. Our model amends the MARTINI force field with an iteratively refined elastic network, and we have previously shown that it reproduces the fluctuations of small fragments as well as the large-scale stress-strain response.&lt;br /&gt;&lt;br /&gt;We developed an automated identification method that classifies the contacting protein interfaces in the CCMV capsid into symmetry-classes and characterizes their structural changes upon deformation in residue-level detail. We observed that the symmetry-classes differ markedly in their stability, in a way that appears to backtrack the putative assembly pathway: interfaces that are believed to form last are most likely to break first. For instance, neither protein dimers (the first assembly step) nor pentamers of dimers (the second step) were ever seen to fail, while the hexameric association site (presumably the last to form) ruptures most readily. Interestingly, the wild type capsid fortifies this location with a cooperatively formed 6-stranded beta-barrel motif, which is missing in the mutant we employed in our studies. We hypothesize that interfacial binding strengths regulate the assembly order, but that later (and hence weaker) contacts may be reinforced by cooperative motifs that form post-assembly.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T15:48:19Z</dcterms:available>
    <dc:contributor>Globisch, Christoph</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen