Topological Linear System Identification via Moderate Deviations Theory

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Jongeneel, Wouter
Kuhn, Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Control Systems Letters. IEEE. 2022, 6, pp. 307-312. eISSN 2475-1456. Available under: doi: 10.1109/LCSYS.2021.3072814
Zusammenfassung

Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or the oscillatory nature of the state trajectories, for example. In this letter we develop a method to learn the topological class of an unknown stable system from a single trajectory of finitely many state observations. Using a moderate deviations principle for the least squares estimator of the unknown system matrix θ, we prove that the probability of misclassification decays exponentially with the number of observations at a rate that is proportional to the square of the smallest singular value of θ.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JONGENEEL, Wouter, Tobias SUTTER, Daniel KUHN, 2022. Topological Linear System Identification via Moderate Deviations Theory. In: IEEE Control Systems Letters. IEEE. 2022, 6, pp. 307-312. eISSN 2475-1456. Available under: doi: 10.1109/LCSYS.2021.3072814
BibTex
@article{Jongeneel2022Topol-55610,
  year={2022},
  doi={10.1109/LCSYS.2021.3072814},
  title={Topological Linear System Identification via Moderate Deviations Theory},
  volume={6},
  journal={IEEE Control Systems Letters},
  pages={307--312},
  author={Jongeneel, Wouter and Sutter, Tobias and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55610">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Topological Linear System Identification via Moderate Deviations Theory</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:44:09Z</dc:date>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or the oscillatory nature of the state trajectories, for example. In this letter we develop a method to learn the topological class of an unknown stable system from a single trajectory of finitely many state observations. Using a moderate deviations principle for the least squares estimator of the unknown system matrix θ, we prove that the probability of misclassification decays exponentially with the number of observations at a rate that is proportional to the square of the smallest singular value of θ.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:44:09Z</dcterms:available>
    <dc:contributor>Jongeneel, Wouter</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Jongeneel, Wouter</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55610"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen