Publikation:

Topological Linear System Identification via Moderate Deviations Theory

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Jongeneel, Wouter
Kuhn, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Control Systems Letters. IEEE. 2022, 6, pp. 307-312. eISSN 2475-1456. Available under: doi: 10.1109/LCSYS.2021.3072814

Zusammenfassung

Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or the oscillatory nature of the state trajectories, for example. In this letter we develop a method to learn the topological class of an unknown stable system from a single trajectory of finitely many state observations. Using a moderate deviations principle for the least squares estimator of the unknown system matrix θ, we prove that the probability of misclassification decays exponentially with the number of observations at a rate that is proportional to the square of the smallest singular value of θ.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JONGENEEL, Wouter, Tobias SUTTER, Daniel KUHN, 2022. Topological Linear System Identification via Moderate Deviations Theory. In: IEEE Control Systems Letters. IEEE. 2022, 6, pp. 307-312. eISSN 2475-1456. Available under: doi: 10.1109/LCSYS.2021.3072814
BibTex
@article{Jongeneel2022Topol-55610,
  year={2022},
  doi={10.1109/LCSYS.2021.3072814},
  title={Topological Linear System Identification via Moderate Deviations Theory},
  volume={6},
  journal={IEEE Control Systems Letters},
  pages={307--312},
  author={Jongeneel, Wouter and Sutter, Tobias and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55610">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Topological Linear System Identification via Moderate Deviations Theory</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:44:09Z</dc:date>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or the oscillatory nature of the state trajectories, for example. In this letter we develop a method to learn the topological class of an unknown stable system from a single trajectory of finitely many state observations. Using a moderate deviations principle for the least squares estimator of the unknown system matrix θ, we prove that the probability of misclassification decays exponentially with the number of observations at a rate that is proportional to the square of the smallest singular value of θ.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:44:09Z</dcterms:available>
    <dc:contributor>Jongeneel, Wouter</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Jongeneel, Wouter</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55610"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen