Visual Analytics for the Prediction of Movie Rating and Box Office Performance

Lade...
Vorschaubild
Dateien
Hafner_265333.pdf
Hafner_265333.pdfGröße: 1017.52 KBDownloads: 563
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013
Zusammenfassung

This paper describes our solution to the IEEE VAST 2013 Mini Challenge 11. The task of the challenge was to create a visual and interactive tool to predict the popularity of new movies in terms of viewer ratings and ticket sales for the opening weekend in the U.S. The data usage was restricted by the challenge organizers to data from the Internet Movie Database (IMDb)2 and a predefined set of Twitter3 microblog messages. To tackle the challenge we designed a system together with an analysis workflow, combining machine learning and visualization paradigms in order to obtain accurate predictions. In Section 2 we describe the machine learning components used within the analysis workflow. Next, in Section 3, we describe where and how the human analyst is enabled to enhance the prediction with her/his world knowledge. Finally, Section 4 concludes the paper providing an evaluation of the prediction accuracy with and without human intervention.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
VIS, 13. Okt. 2013 - 18. Okt. 2013, Atlanta, Georgia, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690EL-ASSADY, Mennatallah, Daniel HAFNER, Michael BLUMENSCHEIN, Alexander JӒGER, Wolfgang JENTNER, Christian ROHRDANTZ, Fabian FISCHER, Svenja SIMON, Tobias SCHRECK, Daniel A. KEIM, 2013. Visual Analytics for the Prediction of Movie Rating and Box Office Performance. VIS. Atlanta, Georgia, USA, 13. Okt. 2013 - 18. Okt. 2013. In: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013
BibTex
@inproceedings{ElAssady2013Visua-26533,
  year={2013},
  title={Visual Analytics for the Prediction of Movie Rating and Box Office Performance},
  booktitle={VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA},
  author={El-Assady, Mennatallah and Hafner, Daniel and Blumenschein, Michael and Jӓger, Alexander and Jentner, Wolfgang and Rohrdantz, Christian and Fischer, Fabian and Simon, Svenja and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26533">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Visual Analytics for the Prediction of Movie Rating and Box Office Performance</dcterms:title>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26533"/>
    <dc:creator>Hafner, Daniel</dc:creator>
    <dc:creator>Simon, Svenja</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Hafner, Daniel</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:creator>Jӓger, Alexander</dc:creator>
    <dcterms:bibliographicCitation>VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13-18 October 2013, Atlanta, Georgia, USA</dcterms:bibliographicCitation>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:contributor>Jӓger, Alexander</dc:contributor>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper describes our solution to the IEEE VAST 2013 Mini Challenge 11. The task of the challenge was to create a visual and interactive tool to predict the popularity of new movies in terms of viewer ratings and ticket sales for the opening weekend in the U.S. The data usage was restricted by the challenge organizers to data from the Internet Movie Database (IMDb)2 and a predefined set of Twitter3 microblog messages. To tackle the challenge we designed a system together with an analysis workflow, combining machine learning and visualization paradigms in order to obtain accurate predictions. In Section 2 we describe the machine learning components used within the analysis workflow. Next, in Section 3, we describe where and how the human analyst is enabled to enhance the prediction with her/his world knowledge. Finally, Section 4 concludes the paper providing an evaluation of the prediction accuracy with and without human intervention.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen