Visual Analytics for the Prediction of Movie Rating and Box Office Performance

Loading...
Thumbnail Image
Date
2013
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA
Abstract
This paper describes our solution to the IEEE VAST 2013 Mini Challenge 11. The task of the challenge was to create a visual and interactive tool to predict the popularity of new movies in terms of viewer ratings and ticket sales for the opening weekend in the U.S. The data usage was restricted by the challenge organizers to data from the Internet Movie Database (IMDb)2 and a predefined set of Twitter3 microblog messages. To tackle the challenge we designed a system together with an analysis workflow, combining machine learning and visualization paradigms in order to obtain accurate predictions. In Section 2 we describe the machine learning components used within the analysis workflow. Next, in Section 3, we describe where and how the human analyst is enabled to enhance the prediction with her/his world knowledge. Finally, Section 4 concludes the paper providing an evaluation of the prediction accuracy with and without human intervention.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
VIS, Oct 13, 2013 - Oct 18, 2013, Atlanta, Georgia, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690EL-ASSADY, Mennatallah, Daniel HAFNER, Michael BLUMENSCHEIN, Alexander JӒGER, Wolfgang JENTNER, Christian ROHRDANTZ, Fabian FISCHER, Svenja SIMON, Tobias SCHRECK, Daniel A. KEIM, 2013. Visual Analytics for the Prediction of Movie Rating and Box Office Performance. VIS. Atlanta, Georgia, USA, Oct 13, 2013 - Oct 18, 2013. In: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA
BibTex
@inproceedings{ElAssady2013Visua-26533,
  year={2013},
  title={Visual Analytics for the Prediction of Movie Rating and Box Office Performance},
  booktitle={VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA},
  author={El-Assady, Mennatallah and Hafner, Daniel and Blumenschein, Michael and Jӓger, Alexander and Jentner, Wolfgang and Rohrdantz, Christian and Fischer, Fabian and Simon, Svenja and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26533">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Visual Analytics for the Prediction of Movie Rating and Box Office Performance</dcterms:title>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26533"/>
    <dc:creator>Hafner, Daniel</dc:creator>
    <dc:creator>Simon, Svenja</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Hafner, Daniel</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:creator>Jӓger, Alexander</dc:creator>
    <dcterms:bibliographicCitation>VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13-18 October 2013, Atlanta, Georgia, USA</dcterms:bibliographicCitation>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:contributor>Jӓger, Alexander</dc:contributor>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper describes our solution to the IEEE VAST 2013 Mini Challenge 11. The task of the challenge was to create a visual and interactive tool to predict the popularity of new movies in terms of viewer ratings and ticket sales for the opening weekend in the U.S. The data usage was restricted by the challenge organizers to data from the Internet Movie Database (IMDb)2 and a predefined set of Twitter3 microblog messages. To tackle the challenge we designed a system together with an analysis workflow, combining machine learning and visualization paradigms in order to obtain accurate predictions. In Section 2 we describe the machine learning components used within the analysis workflow. Next, in Section 3, we describe where and how the human analyst is enabled to enhance the prediction with her/his world knowledge. Finally, Section 4 concludes the paper providing an evaluation of the prediction accuracy with and without human intervention.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed