Publikation: Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given the increasing amount and general complexity of time series data in domains such as finance, weather forecasting, and healthcare, there is a growing need for state-of-the-art performance models that can provide interpretable insights into underlying patterns and relationships. Attribution techniques enable the extraction of explanations from time series models to gain insights but are hard to evaluate for their robustness and trustworthiness. We propose the Attribution Stability Indicator (ASI), a measure to incorporate robustness and trustworthiness as properties of attribution techniques for time series into account. We extend a perturbation analysis with correlations of the original time series to the perturbed instance and the attributions to include wanted properties in the measure. We demonstrate the wanted properties based on an analysis of the attributions in a dimension-reduced space and the ASI scores distribution over three whole time series classification datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Daniel A. KEIM, 2023. Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions. ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications. Turin, Italy, 18. Sept. 2024. In: ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications. 2023. Verfügbar unter: doi: 10.48550/arXiv.2310.04178BibTex
@inproceedings{Schlegel2023Intro-70356, year={2023}, doi={10.48550/arXiv.2310.04178}, title={Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions}, booktitle={ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications}, author={Schlegel, Udo and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70356"> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70356/1/Schlegel_2-efipohbghnu36.pdf"/> <dcterms:title>Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:11:25Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract>Given the increasing amount and general complexity of time series data in domains such as finance, weather forecasting, and healthcare, there is a growing need for state-of-the-art performance models that can provide interpretable insights into underlying patterns and relationships. Attribution techniques enable the extraction of explanations from time series models to gain insights but are hard to evaluate for their robustness and trustworthiness. We propose the Attribution Stability Indicator (ASI), a measure to incorporate robustness and trustworthiness as properties of attribution techniques for time series into account. We extend a perturbation analysis with correlations of the original time series to the perturbed instance and the attributions to include wanted properties in the measure. We demonstrate the wanted properties based on an analysis of the attributions in a dimension-reduced space and the ASI scores distribution over three whole time series classification datasets.</dcterms:abstract> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70356/1/Schlegel_2-efipohbghnu36.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:11:25Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70356"/> <dcterms:issued>2023</dcterms:issued> </rdf:Description> </rdf:RDF>