Publikation:

Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions

Lade...
Vorschaubild

Dateien

Schlegel_2-efipohbghnu36.pdf
Schlegel_2-efipohbghnu36.pdfGröße: 1.89 MBDownloads: 17

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Institutionen der Bundesrepublik Deutschland: 3N16242

Projekt

Verbundprojekt: Vertrauenswürdige Künstliche Intelligenz für polizeiliche Anwendung VIKING
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications. 2023. Verfügbar unter: doi: 10.48550/arXiv.2310.04178

Zusammenfassung

Given the increasing amount and general complexity of time series data in domains such as finance, weather forecasting, and healthcare, there is a growing need for state-of-the-art performance models that can provide interpretable insights into underlying patterns and relationships. Attribution techniques enable the extraction of explanations from time series models to gain insights but are hard to evaluate for their robustness and trustworthiness. We propose the Attribution Stability Indicator (ASI), a measure to incorporate robustness and trustworthiness as properties of attribution techniques for time series into account. We extend a perturbation analysis with correlations of the original time series to the perturbed instance and the attributions to include wanted properties in the measure. We demonstrate the wanted properties based on an analysis of the attributions in a dimension-reduced space and the ASI scores distribution over three whole time series classification datasets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications, 18. Sept. 2024, Turin, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Daniel A. KEIM, 2023. Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions. ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications. Turin, Italy, 18. Sept. 2024. In: ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications. 2023. Verfügbar unter: doi: 10.48550/arXiv.2310.04178
BibTex
@inproceedings{Schlegel2023Intro-70356,
  year={2023},
  doi={10.48550/arXiv.2310.04178},
  title={Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions},
  booktitle={ECML-PKDD Workshop XAI-TS: Explainable AI for Time Series: Advances and Applications},
  author={Schlegel, Udo and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70356">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70356/1/Schlegel_2-efipohbghnu36.pdf"/>
    <dcterms:title>Introducing the Attribution Stability Indicator : a Measure for Time Series XAI Attributions</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:11:25Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Given the increasing amount and general complexity of time series data in domains such as finance, weather forecasting, and healthcare, there is a growing need for state-of-the-art performance models that can provide interpretable insights into underlying patterns and relationships. Attribution techniques enable the extraction of explanations from time series models to gain insights but are hard to evaluate for their robustness and trustworthiness. We propose the Attribution Stability Indicator (ASI), a measure to incorporate robustness and trustworthiness as properties of attribution techniques for time series into account. We extend a perturbation analysis with correlations of the original time series to the perturbed instance and the attributions to include wanted properties in the measure. We demonstrate the wanted properties based on an analysis of the attributions in a dimension-reduced space and the ASI scores distribution over three whole time series classification datasets.</dcterms:abstract>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70356/1/Schlegel_2-efipohbghnu36.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:11:25Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Schlegel, Udo</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70356"/>
    <dcterms:issued>2023</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen