Intervals of Special Sign Regular Matrices
Intervals of Special Sign Regular Matrices
Loading...
Date
2015
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 341
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We consider classes of n-by-n sign regular matrices, i.e., of matrices with the property that all their minors of fixed order k have one specified sign or are allowed also to vanish, k = 1, ... ,n. If the sign is nonpositive for all k, such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard partial ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the n-by-n matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Sign regular matrix, totally nonnegative matrix, totally nonpositve matrix, Cauchon algorithm, checkerboard ordering, matrix interval
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
ADM, Mohammad, Jürgen GARLOFF, 2015. Intervals of Special Sign Regular Matrices. Available under: doi: 10.1080/03081087.2015.1090388BibTex
@techreport{Adm2015Inter-31960, year={2015}, doi={10.1080/03081087.2015.1090388}, series={Konstanzer Schriften in Mathematik}, title={Intervals of Special Sign Regular Matrices}, number={341}, author={Adm, Mohammad and Garloff, Jürgen}, note={Der Artikel wird erscheinen in: "Linear and Multilinear Algebra"} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31960"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2015</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-16T12:06:31Z</dc:date> <dc:creator>Adm, Mohammad</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-16T12:06:31Z</dcterms:available> <dc:contributor>Adm, Mohammad</dc:contributor> <dcterms:title>Intervals of Special Sign Regular Matrices</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31960/4/Adm_0-302131.pdf"/> <dcterms:abstract xml:lang="eng">We consider classes of n-by-n sign regular matrices, i.e., of matrices with the property that all their minors of fixed order k have one specified sign or are allowed also to vanish, k = 1, ... ,n. If the sign is nonpositive for all k, such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard partial ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the n-by-n matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31960"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31960/4/Adm_0-302131.pdf"/> <dc:contributor>Garloff, Jürgen</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Der Artikel wird erscheinen in: "Linear and Multilinear Algebra"
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes