Publikation: Determinantal representations and Bézoutians
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. 2017, 285(1-2), pp. 445-459. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1715-9
Zusammenfassung
A major open question in convex algebraic geometry is whether all hyperbolicity cones are spectrahedral, i.e. the solution sets of linear matrix inequalities. We will use sum-of-squares decompositions of certain bilinear forms called Bézoutians to approach this problem. More precisely, we show that for every smooth hyperbolic polynomial h there is another hyperbolic polynomial q such that q⋅h has a definite determinantal representation. Besides commutative algebra, the proof relies on results from real algebraic geometry.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUMMER, Mario, 2017. Determinantal representations and Bézoutians. In: Mathematische Zeitschrift. 2017, 285(1-2), pp. 445-459. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1715-9BibTex
@article{Kummer2017-02Deter-37954, year={2017}, doi={10.1007/s00209-016-1715-9}, title={Determinantal representations and Bézoutians}, number={1-2}, volume={285}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={445--459}, author={Kummer, Mario} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37954"> <dc:contributor>Kummer, Mario</dc:contributor> <dcterms:title>Determinantal representations and Bézoutians</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-10T13:43:27Z</dcterms:available> <dc:creator>Kummer, Mario</dc:creator> <dcterms:issued>2017-02</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">A major open question in convex algebraic geometry is whether all hyperbolicity cones are spectrahedral, i.e. the solution sets of linear matrix inequalities. We will use sum-of-squares decompositions of certain bilinear forms called Bézoutians to approach this problem. More precisely, we show that for every smooth hyperbolic polynomial h there is another hyperbolic polynomial q such that q⋅h has a definite determinantal representation. Besides commutative algebra, the proof relies on results from real algebraic geometry.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-10T13:43:27Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37954"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>