Plethysm and Lattice Point Counting

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Kahle, Thomas
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We apply lattice point counting methods to compute the multiplicities in the plethysm of GL(n). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition μ of 3, 4, or 5, we obtain an explicit formula in λ and k for the multiplicity of Sλ in Sμ(Sk).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Plethysm, Ehrhart function, Quasi-polynomial, Lattice point counting
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KAHLE, Thomas, Mateusz MICHALEK, 2016. Plethysm and Lattice Point Counting. In: Foundations of Computational Mathematics. Springer. 2016, 16(5), pp. 1241-1261. ISSN 1615-3375. eISSN 1615-3383. Available under: doi: 10.1007/s10208-015-9275-7
BibTex
@article{Kahle2016Pleth-52456,
  year={2016},
  doi={10.1007/s10208-015-9275-7},
  title={Plethysm and Lattice Point Counting},
  number={5},
  volume={16},
  issn={1615-3375},
  journal={Foundations of Computational Mathematics},
  pages={1241--1261},
  author={Kahle, Thomas and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52456">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kahle, Thomas</dc:creator>
    <dcterms:abstract xml:lang="eng">We apply lattice point counting methods to compute the multiplicities in the plethysm of GL(n). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition μ of 3, 4, or 5, we obtain an explicit formula in λ and k for the multiplicity of S&lt;sup&gt;λ&lt;/sup&gt; in S&lt;sup&gt;μ&lt;/sup&gt;(S&lt;sup&gt;k&lt;/sup&gt;).</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Plethysm and Lattice Point Counting</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:45:18Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T09:45:18Z</dc:date>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Kahle, Thomas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52456"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen