Publikation:

The Effect of Fitness Function Design on Performance in Evolutionary Robotics : The Influence of a Priori Knowledge

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Divband Soorati, Mohammad

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SILVA, Sara, ed. and others. GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY: ACM, 2015, pp. 153-160. ISBN 978-1-4503-3472-3. Available under: doi: 10.1145/2739480.2754676

Zusammenfassung

Fitness function design is known to be a critical feature of the evolutionary-robotics approach. Potentially, the complexity of evolving a successful controller for a given task can be reduced by integrating a priori knowledge into the fitness function which complicates the comparability of studies in evolutionary robotics. Still, there are only few publications that study the actual effects of different fitness functions on the robot's performance. In this paper, we follow the fitness function classification of Nelson et al. (2009) and investigate a selection of four classes of fitness functions that require different degrees of a priori knowledge. The robot controllers are evolved in simulation using NEAT and we investigate different tasks including obstacle avoidance and (periodic) goal homing. The best evolved controllers were then post-evaluated by examining their potential for adaptation, determining their convergence rates, and using cross-comparisons based on the different fitness function classes. The results confirm that the integration of more a priori knowledge can simplify a task and show that more attention should be paid to fitness function classes when comparing different studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

GECCO '15 : Annual Conference on Genetic and Evolutionary Computation, 11. Juli 2015 - 15. Juli 2015, Madrid, Spain
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DIVBAND SOORATI, Mohammad, Heiko HAMANN, 2015. The Effect of Fitness Function Design on Performance in Evolutionary Robotics : The Influence of a Priori Knowledge. GECCO '15 : Annual Conference on Genetic and Evolutionary Computation. Madrid, Spain, 11. Juli 2015 - 15. Juli 2015. In: SILVA, Sara, ed. and others. GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY: ACM, 2015, pp. 153-160. ISBN 978-1-4503-3472-3. Available under: doi: 10.1145/2739480.2754676
BibTex
@inproceedings{DivbandSoorati2015Effec-59891,
  year={2015},
  doi={10.1145/2739480.2754676},
  title={The Effect of Fitness Function Design on Performance in Evolutionary Robotics : The Influence of a Priori Knowledge},
  isbn={978-1-4503-3472-3},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation},
  pages={153--160},
  editor={Silva, Sara},
  author={Divband Soorati, Mohammad and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59891">
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59891"/>
    <dcterms:title>The Effect of Fitness Function Design on Performance in Evolutionary Robotics : The Influence of a Priori Knowledge</dcterms:title>
    <dcterms:abstract xml:lang="eng">Fitness function design is known to be a critical feature of the evolutionary-robotics approach. Potentially, the complexity of evolving a successful controller for a given task can be reduced by integrating a priori knowledge into the fitness function which complicates the comparability of studies in evolutionary robotics. Still, there are only few publications that study the actual effects of different fitness functions on the robot's performance. In this paper, we follow the fitness function classification of Nelson et al. (2009) and investigate a selection of four classes of fitness functions that require different degrees of a priori knowledge. The robot controllers are evolved in simulation using NEAT and we investigate different tasks including obstacle avoidance and (periodic) goal homing. The best evolved controllers were then post-evaluated by examining their potential for adaptation, determining their convergence rates, and using cross-comparisons based on the different fitness function classes. The results confirm that the integration of more a priori knowledge can simplify a task and show that more attention should be paid to fitness function classes when comparing different studies.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T13:21:34Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T13:21:34Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Divband Soorati, Mohammad</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Divband Soorati, Mohammad</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen