Publikation:

Words in the brain s language

Lade...
Vorschaubild

Dateien

Pulvermueller_1999_Words_in_the.pdf
Pulvermueller_1999_Words_in_the.pdfGröße: 398.8 KBDownloads: 1326

Datum

1999

Autor:innen

Pulvermüller, Friedemann

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Behavioral and Brain Sciences. 1999, 22(2), pp. 253-279

Zusammenfassung

If the cortex is an associative memory, strongly connected cell assemblies will form when neurons in different cortical areas are frequently active at the same time. The cortical distributions of these assemblies must be a consequence of where in the cortex correlated neuronal activity occurred during learning. An assembly can be considered a functional unit exhibiting activity states such as full activation (ignition) after appropriate sensory stimulation (possibly related to perception) and continuous reverberation of excitation within the assembly (a putative memory process). This has implications for cortical topographies and activity dynamics of cell assemblies representing words. Cortical topographies of assemblies should be related to aspects of the meaning of the words they represent, and physiological signs of cell assembly ignition should be followed by possible indicators of reverberation. The following postulates are discussed in detail: (1) assemblies representing phonological word forms are strongly lateralized and distributed over perisylvian cortices; (2) assemblies representing highly abstract words, such as grammatical function words, are also strongly lateralized and restricted to these perisylvian regions; (3) assemblies representing concrete content words include additional neurons in both hemispheres; (4) assemblies representing words referring to visual stimuli include neurons in visual cortices; (5) assemblies representing words referring to actions include neurons in motor cortices. Two main sources of evidence are used for evaluating these proposals: (a) imaging studies aiming at localizing word processing in the brain, based on stimulus-triggered event-related potentials (ERP), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), and (b) studies of the temporal dynamics of fast activity changes in the brain, as revealed by high-frequency responses recorded in the electroencephalogram (EEG) and magnetoencephalogram (MEG). These data provide evidence for processing differences between words and matched meaningless pseudowords, and between word classes such as concrete content and abstract function words, and words evoking visual or motor associations. There is evidence for early word class-specific spreading of neuronal activity and for equally specific high-frequency responses occurring later. These results support a neurobiological model of language in the Hebbian tradition. Competing large-scale neuronal theories of language are discussed in the light of the summarized data. A final paragraph addresses neurobiological perspectives on the problem of serial order of words in syntactic strings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

associative learning, cell assembly, cognition, cortex, ERP, EEG, fMRI, language, lexicon, MEG, PET, word category

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PULVERMÜLLER, Friedemann, 1999. Words in the brain s language. In: Behavioral and Brain Sciences. 1999, 22(2), pp. 253-279
BibTex
@article{Pulvermuller1999Words-10734,
  year={1999},
  title={Words in the brain s language},
  number={2},
  volume={22},
  journal={Behavioral and Brain Sciences},
  pages={253--279},
  author={Pulvermüller, Friedemann}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/10734">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10734/1/Pulvermueller_1999_Words_in_the.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Behavioral and Brain Sciences 22 (1999), 2, pp. 253-279</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:21:39Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10734/1/Pulvermueller_1999_Words_in_the.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/10734"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:issued>1999</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Pulvermüller, Friedemann</dc:creator>
    <dcterms:abstract xml:lang="eng">If the cortex is an associative memory, strongly connected cell assemblies will form when neurons in different cortical areas are frequently active at the same time. The cortical distributions of these assemblies must be a consequence of where in the cortex correlated neuronal activity occurred during learning. An assembly can be considered a functional unit exhibiting activity states such as full activation (ignition) after appropriate sensory stimulation (possibly related to perception) and continuous reverberation of excitation within the assembly (a putative memory process). This has implications for cortical topographies and activity dynamics of cell assemblies representing words. Cortical topographies of assemblies should be related to aspects of the meaning of the words they represent, and physiological signs of cell assembly ignition should be followed by possible indicators of reverberation. The following postulates are discussed in detail: (1) assemblies representing phonological word forms are strongly lateralized and distributed over perisylvian cortices; (2) assemblies representing highly abstract words, such as grammatical function words, are also strongly lateralized and restricted to these perisylvian regions; (3) assemblies representing concrete content words include additional neurons in both hemispheres; (4) assemblies representing words referring to visual stimuli include neurons in visual cortices; (5) assemblies representing words referring to actions include neurons in motor cortices. Two main sources of evidence are used for evaluating these proposals: (a) imaging studies aiming at localizing word processing in the brain, based on stimulus-triggered event-related potentials (ERP), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), and (b) studies of the temporal dynamics of fast activity changes in the brain, as revealed by high-frequency responses recorded in the electroencephalogram (EEG) and magnetoencephalogram (MEG). These data provide evidence for processing differences between words and matched meaningless pseudowords, and between word classes such as concrete content and abstract function words, and words evoking visual or motor associations. There is evidence for early word class-specific spreading of neuronal activity and for equally specific high-frequency responses occurring later. These results support a neurobiological model of language in the Hebbian tradition. Competing large-scale neuronal theories of language are discussed in the light of the summarized data. A final paragraph addresses neurobiological perspectives on the problem of serial order of words in syntactic strings.</dcterms:abstract>
    <dcterms:title>Words in the brain s language</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Pulvermüller, Friedemann</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:21:39Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen