Publikation: Highlighting Space-Time Pattern : Effective Visual Encodings for Interactive Decision Making
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The research reported in this paper focuses on integrating analytical and visual methods in order to explore complex patterns in geo-related multivariate data sets and to understand changes of these patterns over time. The goal is to provide techniques that are able to analyze real-world Data Warehouses, a typical architecture to manage such geo-related multidimensional data sets, in order to support analyst s decision making process. Challenges arise because real word applications usually have to deal with millions of records, with dozens of dimensions, and spatio-temporal context. Therefore, a tightly integration of automated analysis and interactive visualizations are integrated is needed (as proposed in the context of Visual Analytics). Our approach uses the well studied capabilities provided by Data Warehouses supporting knowledge discovery and decision making to analyze spatio-temporal behavior of pattern in high dimensional-spaces. The topic of the paper is to show possible interplays between automated analysis and geo-spatial visualization.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SIPS, Mike, Jörn SCHNEIDEWIND, Daniel A. KEIM, 2007. Highlighting Space-Time Pattern : Effective Visual Encodings for Interactive Decision Making. In: International journal of geographical information science. 2007, 21(8), pp. 879-894. Available under: doi: 10.1080/13658810701362147BibTex
@article{Sips2007Highl-5479, year={2007}, doi={10.1080/13658810701362147}, title={Highlighting Space-Time Pattern : Effective Visual Encodings for Interactive Decision Making}, number={8}, volume={21}, journal={International journal of geographical information science}, pages={879--894}, author={Sips, Mike and Schneidewind, Jörn and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5479"> <dcterms:abstract xml:lang="eng">The research reported in this paper focuses on integrating analytical and visual methods in order to explore complex patterns in geo-related multivariate data sets and to understand changes of these patterns over time. The goal is to provide techniques that are able to analyze real-world Data Warehouses, a typical architecture to manage such geo-related multidimensional data sets, in order to support analyst s decision making process. Challenges arise because real word applications usually have to deal with millions of records, with dozens of dimensions, and spatio-temporal context. Therefore, a tightly integration of automated analysis and interactive visualizations are integrated is needed (as proposed in the context of Visual Analytics). Our approach uses the well studied capabilities provided by Data Warehouses supporting knowledge discovery and decision making to analyze spatio-temporal behavior of pattern in high dimensional-spaces. The topic of the paper is to show possible interplays between automated analysis and geo-spatial visualization.</dcterms:abstract> <dcterms:issued>2007</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5479"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:format>application/pdf</dc:format> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>Highlighting Space-Time Pattern : Effective Visual Encodings for Interactive Decision Making</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:44Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>First publ. in: International journal of geographical information science 21 (2007), 8, pp. 879-894</dcterms:bibliographicCitation> <dc:creator>Sips, Mike</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Schneidewind, Jörn</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5479/1/highlight_geopat_sips_schneide_keim_final.pdf"/> <dc:contributor>Sips, Mike</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5479/1/highlight_geopat_sips_schneide_keim_final.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:44Z</dc:date> </rdf:Description> </rdf:RDF>