Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Nanomechanical oscillators are at the heart of a variety of precision measurements. This article reports on dispersive radiation coupling of nanomechanical oscillators to the evanescent near-field of toroid optical microresonators. The optomechanical coupling coefficient which reaches values >200 MHz/nm>200 MHz/nm, corresponding to a vacuum optomechanical coupling rate >4 kHz>4 kHz, is characterized in detail and good agreement between experimental, analytical and finite element simulation based values is found. It is shown that both the mode-structure and -patterns of nanomechanical oscillators can be characterized relying solely on Brownian motion. Moreover, it is demonstrated that the radiation pressure interaction can cause self-sustained coherent nanomechanical oscillations at nano-Watt power levels as well as cooling of the nanomechanical oscillator. Finally, the feasibility of coupling nanomechanical motion to two optical modes where the optical mode spacing exactly equals the mechanical resonance frequency is demonstrated for the first time. As shown here, this Raman-type scheme allows both amplification and cooling.
Zusammenfassung in einer weiteren Sprache
Les nanorésonateurs mécaniques sont au coeur de nombreuses mesures de précision. Nous avons obtenu un couplage dispersif par pression de radiation entre un nanorésonateur et le champ évanescent au voisinage dʼun microrésonateur en forme de toroïde. Le coefficient de couplage optomécanique atteint dans ce système une valeur supérieure à 200 MHz/nm, correspondant à un décalage supérieur à 4 kHz associé aux fluctuations quantiques de position du nanorésonateur. La caractérisation détaillée de ce couplage montre un bon accord entre lʼexpérience et les valeurs déterminées analytiquement ou par simulation par éléments finis. Nous montrons que la structure du mode mécanique du nanorésonateur peut être déterminée à partir de la seule observation de son mouvement brownien. De plus, nous avons observé que lʼinteraction par pression de radiation peut conduire à des oscillations cohérentes et auto-entretenues du nanorésonateur pour des puissances de lʼordre du nanowatt, et aussi à un refroidissement du nanorésonateur. Enfin, la possibilité de coupler le mouvement du nanorésonateur à deux modes optiques dont lʼespacement en fréquence correspond exactement à la fréquence de résonance mécanique est démontrée pour la première fois. Nous montrons que ce mécanisme de type Raman permet à la fois une amplification et un refroidissement du nanorésonateur.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ANETSBERGER, Georg, Eva M. WEIG, Jörg P. KOTTHAUS, Tobias J. KIPPENBERG, 2011. Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling. In: Comptes Rendus Physique. 2011, 12(9-10), pp. 800-816. ISSN 1631-0705. Available under: doi: 10.1016/j.crhy.2011.10.012BibTex
@article{Anetsberger2011Cavit-23492, year={2011}, doi={10.1016/j.crhy.2011.10.012}, title={Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling}, number={9-10}, volume={12}, issn={1631-0705}, journal={Comptes Rendus Physique}, pages={800--816}, author={Anetsberger, Georg and Weig, Eva M. and Kotthaus, Jörg P. and Kippenberg, Tobias J.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23492"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23492/1/anetsberger_234922.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T05:59:09Z</dc:date> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:bibliographicCitation>Comptes Rendus Physique ; 12 (2011), 9-10. - S. 800-816</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:issued>2011</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23492/1/anetsberger_234922.pdf"/> <dc:creator>Kotthaus, Jörg P.</dc:creator> <dc:contributor>Weig, Eva M.</dc:contributor> <dcterms:alternative>Optomécanique en cavité et refroidissement de nanorésonateurs mécaniques par couplage en champ proche à un microtore</dcterms:alternative> <dc:creator>Weig, Eva M.</dc:creator> <dc:contributor>Kippenberg, Tobias J.</dc:contributor> <dc:contributor>Anetsberger, Georg</dc:contributor> <dc:creator>Anetsberger, Georg</dc:creator> <dc:contributor>Kotthaus, Jörg P.</dc:contributor> <dcterms:title>Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T05:59:09Z</dcterms:available> <dc:creator>Kippenberg, Tobias J.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23492"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Nanomechanical oscillators are at the heart of a variety of precision measurements. This article reports on dispersive radiation coupling of nanomechanical oscillators to the evanescent near-field of toroid optical microresonators. The optomechanical coupling coefficient which reaches values >200 MHz/nm>200 MHz/nm, corresponding to a vacuum optomechanical coupling rate >4 kHz>4 kHz, is characterized in detail and good agreement between experimental, analytical and finite element simulation based values is found. It is shown that both the mode-structure and -patterns of nanomechanical oscillators can be characterized relying solely on Brownian motion. Moreover, it is demonstrated that the radiation pressure interaction can cause self-sustained coherent nanomechanical oscillations at nano-Watt power levels as well as cooling of the nanomechanical oscillator. Finally, the feasibility of coupling nanomechanical motion to two optical modes where the optical mode spacing exactly equals the mechanical resonance frequency is demonstrated for the first time. As shown here, this Raman-type scheme allows both amplification and cooling.</dcterms:abstract> </rdf:Description> </rdf:RDF>