About Mechanical and Electrophysiological Properties of So-Called Slow and Fast Muscles : An investigation at the M. quadriceps femoris of marathon runners, sprinters, volleyball players and physical education students

Lade...
Vorschaubild
Dateien
Hering_2-f4n1w3phm6ps1.pdf
Hering_2-f4n1w3phm6ps1.pdfGröße: 10.82 MBDownloads: 1800
Datum
2000
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

On the one hand, there are hints in the literature which suggest a connection between the percentage of fast-twitch muscle fibres in thigh muscles and 100 m record times, on the other hand, few out of the numerous training studies report a transformation in fiber distribution from slow-twitch to fast-twitch fibers. Most longitudinal studies rather show adaptions from fast-twitch to slow-twitch. This contrasts with numerous animal studies which provide evidence for both fiber transformation from MHCIIB via isoforms to MHCI and vice versa from MHCI to MHCIIB. A confusing situation that remains without any conclusive explanation so far. These facts provided the basis for the study at hand which aims to describe the mechanical properties of so-called slow and fast muscle fibers by examining simple voluntary contractions at different levels of demand in order to gain insight into the functional relation between specific training stimuli and fiber properties. For this purpose, 12 short-track runners, 12 volleyball players, 12 marathon runners and 12 students of the faculty of sports were submitted to tests of maximal strength, reflexes, anaerobic strength at two different levels, relaxation and aerobic strength. The anthropometric, strength and EMG data raised in the study were used as a basis for calculating 575 values. The results claim a dominant role of neuronal processes in the development of specific performance parameters of different sports. In order to link muscle innervation and morphological adaption, the Ca2+-system will be discussed. Since intracellular Ca2+ concentration can be seen as a possible trigger for MHC transformation, length and frequency of muscle innervation as well as the specific recruitment of motor units play a decisive role in the structural plasticit.On the one hand, there are hints in the literature which suggest a connection between the percentage of fast-twitch muscle fibres in thigh muscles and 100 m record times, on the other hand, few out of the numerous training studies report a transformation in fiber distribution from slow-twitch to fast-twitch fibers. Most longitudinal studies rather show adaptions from fast-twitch to slow-twitch. This contrasts with numerous animal studies which provide evidence for both fiber transformation from MHCIIB via isoforms to MHCI and vice versa from MHCI to MHCIIB. A confusing situation that remains without any conclusive explanation so far. These facts provided the basis for the study at hand which aims to describe the mechanical properties of so-called slow and fast muscle fibers by examining simple voluntary contractions at different levels of demand in order to gain insight into the functional relation between specific training stimuli and fiber properties. For this purpose, 12 short-track runners, 12 volleyball players, 12 marathon runners and 12 students of the faculty of sports were submitted to tests of maximal strength, reflexes, anaerobic strength at two different levels, relaxation and aerobic strength. The anthropometric, strength and EMG data raised in the study were used as a basis for calculating 575 values. The results claim a dominant role of neuronal processes in the development of specific performance parameters of different sports. In order to link muscle innervation and morphological adaption, the Ca2+-system will be discussed.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
796 Sport
Schlagwörter
Muscle, Physiology, Muscle Fibre Typ, Electromyography, EMG, Torque, Fast Muscle, Slow Muscle
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HERING, Gernot, 2000. About Mechanical and Electrophysiological Properties of So-Called Slow and Fast Muscles : An investigation at the M. quadriceps femoris of marathon runners, sprinters, volleyball players and physical education students [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Hering2000About-45247,
  year={2000},
  title={About Mechanical and Electrophysiological Properties of So-Called Slow and Fast Muscles : An investigation at the M. quadriceps femoris of marathon runners, sprinters, volleyball players and physical education students},
  author={Hering, Gernot},
  note={Deutsche Version der Dissertation: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-6110},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45247">
    <dcterms:abstract xml:lang="eng">On the one hand, there are hints in the literature which suggest a connection between the percentage of fast-twitch muscle fibres in thigh muscles and 100 m record times, on the other hand, few out of the numerous training studies report a transformation in fiber distribution from slow-twitch to fast-twitch fibers. Most longitudinal studies rather show adaptions from fast-twitch to slow-twitch. This contrasts with numerous animal studies which provide evidence for both fiber transformation from MHCIIB via isoforms to MHCI and vice versa from MHCI to MHCIIB. A confusing situation that remains without any conclusive explanation so far. These facts provided the basis for the study at hand which aims to describe the mechanical properties of so-called slow and fast muscle fibers by examining simple voluntary contractions at different levels of demand in order to gain insight into the functional relation between specific training stimuli and fiber properties. For this purpose, 12 short-track runners, 12 volleyball players, 12 marathon runners and 12 students of the faculty of sports were submitted to tests of maximal strength, reflexes, anaerobic strength at two different levels, relaxation and aerobic strength. The anthropometric, strength and EMG data raised in the study were used as a basis for calculating 575 values. The results claim a dominant role of neuronal processes in the development of specific performance parameters of different sports. In order to link muscle innervation and morphological adaption, the Ca2+-system will be discussed. Since intracellular Ca2+ concentration can be seen as a possible trigger for MHC transformation, length and frequency of muscle innervation as well as the specific recruitment of motor units play a decisive role in the structural plasticit.On the one hand, there are hints in the literature which suggest a connection between the percentage of fast-twitch muscle fibres in thigh muscles and 100 m record times, on the other hand, few out of the numerous training studies report a transformation in fiber distribution from slow-twitch to fast-twitch fibers. Most longitudinal studies rather show adaptions from fast-twitch to slow-twitch. This contrasts with numerous animal studies which provide evidence for both fiber transformation from MHCIIB via isoforms to MHCI and vice versa from MHCI to MHCIIB. A confusing situation that remains without any conclusive explanation so far. These facts provided the basis for the study at hand which aims to describe the mechanical properties of so-called slow and fast muscle fibers by examining simple voluntary contractions at different levels of demand in order to gain insight into the functional relation between specific training stimuli and fiber properties. For this purpose, 12 short-track runners, 12 volleyball players, 12 marathon runners and 12 students of the faculty of sports were submitted to tests of maximal strength, reflexes, anaerobic strength at two different levels, relaxation and aerobic strength. The anthropometric, strength and EMG data raised in the study were used as a basis for calculating 575 values. The results claim a dominant role of neuronal processes in the development of specific performance parameters of different sports. In order to link muscle innervation and morphological adaption, the Ca2+-system will be discussed.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hering, Gernot</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-28T08:15:46Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45247/3/Hering_2-f4n1w3phm6ps1.pdf"/>
    <dc:contributor>Hering, Gernot</dc:contributor>
    <dcterms:title>About Mechanical and Electrophysiological Properties of So-Called Slow and Fast Muscles : An investigation at the M. quadriceps femoris of marathon runners, sprinters, volleyball players and physical education students</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45247"/>
    <dcterms:issued>2000</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-28T08:15:46Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45247/3/Hering_2-f4n1w3phm6ps1.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
December 11, 2000
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2000
Finanzierungsart
Kommentar zur Publikation
Deutsche Version der Dissertation: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-6110
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen