Publikation: Time Course of Brain Network Reconfiguration Supporting Inhibitory Control
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color–word Stroop task. Time–frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal–parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POPOV, Tzvetan G., Britta WESTNER, Rebecca L. SILTON, Sarah M. SASS, Jeffrey M. SPIELBERG, Brigitte ROCKSTROH, Wendy HELLER, Gregory A. MILLER, 2018. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control. In: The Journal of Neuroscience. 2018, 38(18), pp. 4348-4356. ISSN 0270-6474. eISSN 1529-2401. Available under: doi: 10.1523/JNEUROSCI.2639-17.2018BibTex
@article{Popov2018-05-02Cours-42456, year={2018}, doi={10.1523/JNEUROSCI.2639-17.2018}, title={Time Course of Brain Network Reconfiguration Supporting Inhibitory Control}, number={18}, volume={38}, issn={0270-6474}, journal={The Journal of Neuroscience}, pages={4348--4356}, author={Popov, Tzvetan G. and Westner, Britta and Silton, Rebecca L. and Sass, Sarah M. and Spielberg, Jeffrey M. and Rockstroh, Brigitte and Heller, Wendy and Miller, Gregory A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42456"> <dc:creator>Westner, Britta</dc:creator> <dc:creator>Rockstroh, Brigitte</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42456"/> <dc:creator>Popov, Tzvetan G.</dc:creator> <dcterms:issued>2018-05-02</dcterms:issued> <dc:contributor>Heller, Wendy</dc:contributor> <dc:creator>Silton, Rebecca L.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Miller, Gregory A.</dc:contributor> <dc:contributor>Westner, Britta</dc:contributor> <dc:creator>Sass, Sarah M.</dc:creator> <dc:contributor>Spielberg, Jeffrey M.</dc:contributor> <dcterms:abstract xml:lang="eng">Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color–word Stroop task. Time–frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal–parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T06:51:48Z</dcterms:available> <dc:creator>Spielberg, Jeffrey M.</dc:creator> <dcterms:title>Time Course of Brain Network Reconfiguration Supporting Inhibitory Control</dcterms:title> <dc:contributor>Silton, Rebecca L.</dc:contributor> <dc:contributor>Rockstroh, Brigitte</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Miller, Gregory A.</dc:creator> <dc:contributor>Sass, Sarah M.</dc:contributor> <dc:creator>Heller, Wendy</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T06:51:48Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Popov, Tzvetan G.</dc:contributor> </rdf:Description> </rdf:RDF>