Time Course of Brain Network Reconfiguration Supporting Inhibitory Control

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Silton, Rebecca L.
Sass, Sarah M.
Spielberg, Jeffrey M.
Heller, Wendy
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Journal of Neuroscience. 2018, 38(18), pp. 4348-4356. ISSN 0270-6474. eISSN 1529-2401. Available under: doi: 10.1523/JNEUROSCI.2639-17.2018
Zusammenfassung

Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color–word Stroop task. Time–frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal–parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690POPOV, Tzvetan G., Britta WESTNER, Rebecca L. SILTON, Sarah M. SASS, Jeffrey M. SPIELBERG, Brigitte ROCKSTROH, Wendy HELLER, Gregory A. MILLER, 2018. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control. In: The Journal of Neuroscience. 2018, 38(18), pp. 4348-4356. ISSN 0270-6474. eISSN 1529-2401. Available under: doi: 10.1523/JNEUROSCI.2639-17.2018
BibTex
@article{Popov2018-05-02Cours-42456,
  year={2018},
  doi={10.1523/JNEUROSCI.2639-17.2018},
  title={Time Course of Brain Network Reconfiguration Supporting Inhibitory Control},
  number={18},
  volume={38},
  issn={0270-6474},
  journal={The Journal of Neuroscience},
  pages={4348--4356},
  author={Popov, Tzvetan G. and Westner, Britta and Silton, Rebecca L. and Sass, Sarah M. and Spielberg, Jeffrey M. and Rockstroh, Brigitte and Heller, Wendy and Miller, Gregory A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42456">
    <dc:creator>Westner, Britta</dc:creator>
    <dc:creator>Rockstroh, Brigitte</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42456"/>
    <dc:creator>Popov, Tzvetan G.</dc:creator>
    <dcterms:issued>2018-05-02</dcterms:issued>
    <dc:contributor>Heller, Wendy</dc:contributor>
    <dc:creator>Silton, Rebecca L.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Miller, Gregory A.</dc:contributor>
    <dc:contributor>Westner, Britta</dc:contributor>
    <dc:creator>Sass, Sarah M.</dc:creator>
    <dc:contributor>Spielberg, Jeffrey M.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color–word Stroop task. Time–frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal–parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T06:51:48Z</dcterms:available>
    <dc:creator>Spielberg, Jeffrey M.</dc:creator>
    <dcterms:title>Time Course of Brain Network Reconfiguration Supporting Inhibitory Control</dcterms:title>
    <dc:contributor>Silton, Rebecca L.</dc:contributor>
    <dc:contributor>Rockstroh, Brigitte</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Miller, Gregory A.</dc:creator>
    <dc:contributor>Sass, Sarah M.</dc:contributor>
    <dc:creator>Heller, Wendy</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T06:51:48Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Popov, Tzvetan G.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja