Publikation:

Lewis' Triviality for Quasi Probabilities

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Logic, Language and Information. 2019, 28(4), pp. 515-549. ISSN 0925-8531. eISSN 1572-9583. Available under: doi: 10.1007/s10849-019-09289-0

Zusammenfassung

According to Stalnaker’s Thesis (S), the probability of a conditional is the conditional probability. Under some mild conditions, the thesis trivialises probabilities and conditionals, as initially shown by David Lewis. This article asks the following question: does (S) still lead to triviality, if the probability function in (S) is replaced by a probability-like function? The article considers plausibility functions, in the sense of Friedman and Halpern, which additionally mimic probabilistic additivity and conditionalisation. These quasi probabilities comprise Friedman–Halpern’s conditional plausibility spaces, as well as other known representations of conditional doxastic states. The paper proves Lewis’ triviality for quasi probabilities and discusses how this has implications for three other prominent strategies to avoid Lewis’ triviality: (1) Adams’ thesis, where the probability function on the left in (S) is replaced by a probability-like function, (2) abandoning conditionalisation, where probability conditionalisation on the right in (S) is replaced by another propositional update procedure and (3) the approximation thesis, where equality in (S) is replaced by approximation. The paper also shows that Lewis’ triviality result is really about ‘additiveness’ and ‘conditionality’.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RAIDL, Eric, 2019. Lewis' Triviality for Quasi Probabilities. In: Journal of Logic, Language and Information. 2019, 28(4), pp. 515-549. ISSN 0925-8531. eISSN 1572-9583. Available under: doi: 10.1007/s10849-019-09289-0
BibTex
@article{Raidl2019-12Lewis-47929,
  year={2019},
  doi={10.1007/s10849-019-09289-0},
  title={Lewis' Triviality for Quasi Probabilities},
  number={4},
  volume={28},
  issn={0925-8531},
  journal={Journal of Logic, Language and Information},
  pages={515--549},
  author={Raidl, Eric}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47929">
    <dcterms:issued>2019-12</dcterms:issued>
    <dc:creator>Raidl, Eric</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T08:58:01Z</dcterms:available>
    <dcterms:title>Lewis' Triviality for Quasi Probabilities</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47929"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T08:58:01Z</dc:date>
    <dcterms:abstract xml:lang="eng">According to Stalnaker’s Thesis (S), the probability of a conditional is the conditional probability. Under some mild conditions, the thesis trivialises probabilities and conditionals, as initially shown by David Lewis. This article asks the following question: does (S) still lead to triviality, if the probability function in (S) is replaced by a probability-like function? The article considers plausibility functions, in the sense of Friedman and Halpern, which additionally mimic probabilistic additivity and conditionalisation. These quasi probabilities comprise Friedman–Halpern’s conditional plausibility spaces, as well as other known representations of conditional doxastic states. The paper proves Lewis’ triviality for quasi probabilities and discusses how this has implications for three other prominent strategies to avoid Lewis’ triviality: (1) Adams’ thesis, where the probability function on the left in (S) is replaced by a probability-like function, (2) abandoning conditionalisation, where probability conditionalisation on the right in (S) is replaced by another propositional update procedure and (3) the approximation thesis, where equality in (S) is replaced by approximation. The paper also shows that Lewis’ triviality result is really about ‘additiveness’ and ‘conditionality’.</dcterms:abstract>
    <dc:contributor>Raidl, Eric</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen