Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

No Thumbnail Available
Files
There are no files associated with this item.
Date
2011
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Stochastics : An International Journal of Probability and Stochastic Processes ; 85 (2011), 6. - pp. 960-986. - ISSN 1744-2508. - eISSN 1744-2516
Abstract
We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdWH(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
semilinear stochastic equation; uniqueness in law; transition semigroup; strong Feller property; invariant measure
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KUNZE, Markus, 2011. Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces. In: Stochastics : An International Journal of Probability and Stochastic Processes. 85(6), pp. 960-986. ISSN 1744-2508. eISSN 1744-2516. Available under: doi: 10.1080/17442508.2012.712973
BibTex
@article{Kunze2011-01-12T14:29:08ZPertu-41252,
  year={2011},
  doi={10.1080/17442508.2012.712973},
  title={Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces},
  number={6},
  volume={85},
  issn={1744-2508},
  journal={Stochastics : An International Journal of Probability and Stochastic Processes},
  pages={960--986},
  author={Kunze, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41252">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kunze, Markus</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T13:22:47Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T13:22:47Z</dc:date>
    <dcterms:abstract xml:lang="eng">We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW&lt;sub&gt;H&lt;/sub&gt;(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.</dcterms:abstract>
    <dcterms:title>Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41252"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2011-01-12T14:29:08Z</dcterms:issued>
    <dc:contributor>Kunze, Markus</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed