Publikation:

kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity

Lade...
Vorschaubild

Dateien

Kisilevich_kACTUS.pdf
Kisilevich_kACTUS.pdfGröße: 6.97 MBDownloads: 985

Datum

2009

Autor:innen

Elovici, Yuval
Shapira, Bracha
Rokach, Lior

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GAL, Cecilia S., ed., Paul B. KANTOR, ed., Michael E. LESK, ed.. Protecting Persons While Protecting the People. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 63-81. Lecture Notes in Computer Science. 5661. ISBN 978-3-642-10232-5. Available under: doi: 10.1007/978-3-642-10233-2_7

Zusammenfassung

k-anonymity is the method used for masking sensitive data which successfully solves the problem of re-linking of data with an external source and makes it difficult to re-identify the individual. Thus k-anonymity works on a set of quasi-identifiers (public sensitive attributes), whose possible availability and linking is anticipated from external dataset, and demands that the released dataset will contain at least k records for every possible quasi-identifier value. Another aspect of k is its capability of maintaining the truthfulness of the released data (unlike other existing methods). This is achieved by generalization, a primary technique in k-anonymity. Generalization consists of generalizing attribute values and substituting them with semantically consistent but less precise values. When the substituted value doesn’t preserve semantic validity the technique is called suppression which is a private case of generalization. We present a hybrid approach called compensation which is based on suppression and swapping for achieving privacy. Since swapping decreases the truthfulness of attribute values there is a tradeoff between level of swapping (information truthfulness) and suppression (information loss) incorporated in our algorithm.
We use k-anonymity to explore the issue of anonymity preservation. Since we do not use generalization, we do not need a priori knowledge of attribute semantics. We investigate data anonymization in the context of classification and use tree properties to satisfy k-anonymization. Our work improves previous approaches by increasing classification accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

anonymity, privacy preserving, generalization, suppression, data mining

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KISILEVICH, Slava, Yuval ELOVICI, Bracha SHAPIRA, Lior ROKACH, 2009. kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity. In: GAL, Cecilia S., ed., Paul B. KANTOR, ed., Michael E. LESK, ed.. Protecting Persons While Protecting the People. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 63-81. Lecture Notes in Computer Science. 5661. ISBN 978-3-642-10232-5. Available under: doi: 10.1007/978-3-642-10233-2_7
BibTex
@inproceedings{Kisilevich2009kACTU-19200,
  year={2009},
  doi={10.1007/978-3-642-10233-2_7},
  title={kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity},
  number={5661},
  isbn={978-3-642-10232-5},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Protecting Persons While Protecting the People},
  pages={63--81},
  editor={Gal, Cecilia S. and Kantor, Paul B. and Lesk, Michael E.},
  author={Kisilevich, Slava and Elovici, Yuval and Shapira, Bracha and Rokach, Lior}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19200">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Shapira, Bracha</dc:creator>
    <dc:creator>Elovici, Yuval</dc:creator>
    <dc:contributor>Shapira, Bracha</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19200"/>
    <dc:contributor>Elovici, Yuval</dc:contributor>
    <dc:contributor>Kisilevich, Slava</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T08:25:52Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">k-anonymity is the method used for masking sensitive data which successfully solves the problem of re-linking of data with an external source and makes it difficult to re-identify the individual. Thus k-anonymity works on a set of quasi-identifiers (public sensitive attributes), whose possible availability and linking is anticipated from external dataset, and demands that the released dataset will contain at least k records for every possible quasi-identifier value. Another aspect of k is its capability of maintaining the truthfulness of the released data (unlike other existing methods). This is achieved by generalization, a primary technique in k-anonymity. Generalization consists of generalizing attribute values and substituting them with semantically consistent but less precise values. When the substituted value doesn’t preserve semantic validity the technique is called suppression which is a private case of generalization. We present a hybrid approach called compensation which is based on suppression and swapping for achieving privacy. Since swapping decreases the truthfulness of attribute values there is a tradeoff between level of swapping (information truthfulness) and suppression (information loss) incorporated in our algorithm.&lt;br /&gt;We use k-anonymity to explore the issue of anonymity preservation. Since we do not use generalization, we do not need a priori knowledge of attribute semantics. We investigate data anonymization in the context of classification and use tree properties to satisfy k-anonymization. Our work improves previous approaches by increasing classification accuracy.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T08:25:52Z</dc:date>
    <dc:creator>Kisilevich, Slava</dc:creator>
    <dcterms:issued>2009</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>First publ. in: Protecting persons while protecting the people : Second Annual Workshop on Information Privacy and National Security, ISIPS 2008, New Brunswick, NJ, USA, May 12, 2008 / Gal, Cecilia ... (Eds.). - Berlin : Springer, 2009. - pp. 63-81. - (Lecture Notes in Computer Science ; 5661). - ISBN 978-3-642-10233-2</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19200/2/Kisilevich_kACTUS.pdf"/>
    <dc:contributor>Rokach, Lior</dc:contributor>
    <dc:creator>Rokach, Lior</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19200/2/Kisilevich_kACTUS.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen