kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
k-anonymity is the method used for masking sensitive data which successfully solves the problem of re-linking of data with an external source and makes it difficult to re-identify the individual. Thus k-anonymity works on a set of quasi-identifiers (public sensitive attributes), whose possible availability and linking is anticipated from external dataset, and demands that the released dataset will contain at least k records for every possible quasi-identifier value. Another aspect of k is its capability of maintaining the truthfulness of the released data (unlike other existing methods). This is achieved by generalization, a primary technique in k-anonymity. Generalization consists of generalizing attribute values and substituting them with semantically consistent but less precise values. When the substituted value doesn’t preserve semantic validity the technique is called suppression which is a private case of generalization. We present a hybrid approach called compensation which is based on suppression and swapping for achieving privacy. Since swapping decreases the truthfulness of attribute values there is a tradeoff between level of swapping (information truthfulness) and suppression (information loss) incorporated in our algorithm.
We use k-anonymity to explore the issue of anonymity preservation. Since we do not use generalization, we do not need a priori knowledge of attribute semantics. We investigate data anonymization in the context of classification and use tree properties to satisfy k-anonymization. Our work improves previous approaches by increasing classification accuracy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KISILEVICH, Slava, Yuval ELOVICI, Bracha SHAPIRA, Lior ROKACH, 2009. kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity. In: GAL, Cecilia S., ed., Paul B. KANTOR, ed., Michael E. LESK, ed.. Protecting Persons While Protecting the People. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 63-81. Lecture Notes in Computer Science. 5661. ISBN 978-3-642-10232-5. Available under: doi: 10.1007/978-3-642-10233-2_7BibTex
@inproceedings{Kisilevich2009kACTU-19200, year={2009}, doi={10.1007/978-3-642-10233-2_7}, title={kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity}, number={5661}, isbn={978-3-642-10232-5}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Protecting Persons While Protecting the People}, pages={63--81}, editor={Gal, Cecilia S. and Kantor, Paul B. and Lesk, Michael E.}, author={Kisilevich, Slava and Elovici, Yuval and Shapira, Bracha and Rokach, Lior} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19200"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Shapira, Bracha</dc:creator> <dc:creator>Elovici, Yuval</dc:creator> <dc:contributor>Shapira, Bracha</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19200"/> <dc:contributor>Elovici, Yuval</dc:contributor> <dc:contributor>Kisilevich, Slava</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T08:25:52Z</dcterms:available> <dcterms:abstract xml:lang="eng">k-anonymity is the method used for masking sensitive data which successfully solves the problem of re-linking of data with an external source and makes it difficult to re-identify the individual. Thus k-anonymity works on a set of quasi-identifiers (public sensitive attributes), whose possible availability and linking is anticipated from external dataset, and demands that the released dataset will contain at least k records for every possible quasi-identifier value. Another aspect of k is its capability of maintaining the truthfulness of the released data (unlike other existing methods). This is achieved by generalization, a primary technique in k-anonymity. Generalization consists of generalizing attribute values and substituting them with semantically consistent but less precise values. When the substituted value doesn’t preserve semantic validity the technique is called suppression which is a private case of generalization. We present a hybrid approach called compensation which is based on suppression and swapping for achieving privacy. Since swapping decreases the truthfulness of attribute values there is a tradeoff between level of swapping (information truthfulness) and suppression (information loss) incorporated in our algorithm.<br />We use k-anonymity to explore the issue of anonymity preservation. Since we do not use generalization, we do not need a priori knowledge of attribute semantics. We investigate data anonymization in the context of classification and use tree properties to satisfy k-anonymization. Our work improves previous approaches by increasing classification accuracy.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T08:25:52Z</dc:date> <dc:creator>Kisilevich, Slava</dc:creator> <dcterms:issued>2009</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ. in: Protecting persons while protecting the people : Second Annual Workshop on Information Privacy and National Security, ISIPS 2008, New Brunswick, NJ, USA, May 12, 2008 / Gal, Cecilia ... (Eds.). - Berlin : Springer, 2009. - pp. 63-81. - (Lecture Notes in Computer Science ; 5661). - ISBN 978-3-642-10233-2</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>kACTUS 2 : Privacy preserving in classification tasks using k-Anonymity</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19200/2/Kisilevich_kACTUS.pdf"/> <dc:contributor>Rokach, Lior</dc:contributor> <dc:creator>Rokach, Lior</dc:creator> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19200/2/Kisilevich_kACTUS.pdf"/> </rdf:Description> </rdf:RDF>