Publikation:

Understanding and Streamlining Dose Finding : From Dose Simulation to Dose Estimation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Bräm, Dominic
Gotta, Verena
van den Anker, John
Pfister, Marc

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of Clinical Pharmacology. Wiley. ISSN 0091-2700. eISSN 1552-4604. Verfügbar unter: doi: 10.1002/jcph.6188

Zusammenfassung

Understanding drug dosing to fulfill safety and efficacy requirements in a patient population is an essential part of dose finding in clinical practice and drug development. The majority of current dose finding methods are simulation-based, which can be time consuming and resource intensive. Model-based simulations also do not guarantee that the dose, that will optimally fulfill the safety and efficacy endpoints, will be found. In this work, an advanced dose estimation approach based on the OptiDose concept is utilized to understand therapeutic doses in a patient population and to streamline dose finding. To demonstrate the potential of this concept, two illustrative case studies are presented, each representing specific challenges for dose finding, including different safety and efficacy requirements, complex dose–response relationships, and changes of dynamics in special populations. For both applications, the distributions of therapeutic doses in the population were estimated, such that therapeutic population doses can be determined for any proportion of patients to fulfill the safety and efficacy endpoints. In addition, the therapeutic population dose with which 50% and 95% of the population will fulfill the safety and efficacy requirements was estimated. Dose estimation for both drug applications was implemented in Monolix. The presented OptiDose approach has the potential to identify the “optimal” dose for any pharmacometric and clinical pharmacology scenario, allowing to guide clinical practice and facilitate dose selection in drug development, particularly in special populations such as pediatric or cancer patients. As such, we suggest moving from current “dose simulation” approaches toward a more efficient “dose estimation” paradigm.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

dose estimation, dose finding, OptiDose, therapeutic dose

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRÄM, Dominic, Freya BACHMANN, Johannes SCHROPP, Verena GOTTA, Britta STEFFENS, John VAN DEN ANKER, Marc PFISTER, Gilbert KOCH, 2025. Understanding and Streamlining Dose Finding : From Dose Simulation to Dose Estimation. In: The Journal of Clinical Pharmacology. Wiley. ISSN 0091-2700. eISSN 1552-4604. Verfügbar unter: doi: 10.1002/jcph.6188
BibTex
@article{Bram2025-01-19Under-72174,
  title={Understanding and Streamlining Dose Finding : From Dose Simulation to Dose Estimation},
  year={2025},
  doi={10.1002/jcph.6188},
  issn={0091-2700},
  journal={The Journal of Clinical Pharmacology},
  author={Bräm, Dominic and Bachmann, Freya and Schropp, Johannes and Gotta, Verena and Steffens, Britta and van den Anker, John and Pfister, Marc and Koch, Gilbert}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72174">
    <dc:contributor>Bachmann, Freya</dc:contributor>
    <dc:contributor>Gotta, Verena</dc:contributor>
    <dc:creator>Gotta, Verena</dc:creator>
    <dcterms:abstract>Understanding drug dosing to fulfill safety and efficacy requirements in a patient population is an essential part of dose finding in clinical practice and drug development. The majority of current dose finding methods are simulation-based, which can be time consuming and resource intensive. Model-based simulations also do not guarantee that the dose, that will optimally fulfill the safety and efficacy endpoints, will be found. In this work, an advanced dose estimation approach based on the OptiDose concept is utilized to understand therapeutic doses in a patient population and to streamline dose finding. To demonstrate the potential of this concept, two illustrative case studies are presented, each representing specific challenges for dose finding, including different safety and efficacy requirements, complex dose–response relationships, and changes of dynamics in special populations. For both applications, the distributions of therapeutic doses in the population were estimated, such that therapeutic population doses can be determined for any proportion of patients to fulfill the safety and efficacy endpoints. In addition, the therapeutic population dose with which 50% and 95% of the population will fulfill the safety and efficacy requirements was estimated. Dose estimation for both drug applications was implemented in Monolix. The presented OptiDose approach has the potential to identify the “optimal” dose for any pharmacometric and clinical pharmacology scenario, allowing to guide clinical practice and facilitate dose selection in drug development, particularly in special populations such as pediatric or cancer patients. As such, we suggest moving from current “dose simulation” approaches toward a more efficient “dose estimation” paradigm.</dcterms:abstract>
    <dc:contributor>Bräm, Dominic</dc:contributor>
    <dc:creator>Koch, Gilbert</dc:creator>
    <dcterms:title>Understanding and Streamlining Dose Finding : From Dose Simulation to Dose Estimation</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>van den Anker, John</dc:creator>
    <dc:contributor>van den Anker, John</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bachmann, Freya</dc:creator>
    <dcterms:issued>2025-01-19</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-04T06:45:50Z</dcterms:available>
    <dc:contributor>Koch, Gilbert</dc:contributor>
    <dc:contributor>Steffens, Britta</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-04T06:45:50Z</dc:date>
    <dc:creator>Pfister, Marc</dc:creator>
    <dc:contributor>Pfister, Marc</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72174"/>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dc:creator>Steffens, Britta</dc:creator>
    <dc:creator>Bräm, Dominic</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen