Sums of hermitian squares and the BMV conjecture

Loading...
Thumbnail Image
Date
2008
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Statistical Physics ; 133 (2008), 4. - pp. 739-760. - ISSN 0022-4715
Abstract
Abstract. We show that all the coe cients of the polynomial tr((A + tB)m) ∈ ℝ[t] are nonnegative whenever m ≤ 13 is a nonnegative integer and A and B are positive semide nite matrices of the same size. This has previously been known only for m ≤ 7. The validity of the statement for arbitrary m has recently been shown to be equivalent to the Bessis-Moussa-Villani conjecture from theoretical physics. In our proof, we establish a connection to sums of hermitian squares of polynomials in noncommuting variables and to semide nite programming. As a by-product we obtain an example of a real polynomial in two noncommuting variables having nonnegative trace on all symmetric matrices of the same size, yet not being a sum of hermitian squares and commutators.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Bessis-Moussa-Villani (BMV) conjecture,sum of hermitian squares,trace inequality,semide nite programming.
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KLEP, Igor, Markus SCHWEIGHOFER, 2008. Sums of hermitian squares and the BMV conjecture. In: Journal of Statistical Physics. 133(4), pp. 739-760. ISSN 0022-4715. Available under: doi: 10.1007/s10955-008-9632-x
BibTex
@article{Klep2008hermi-15620,
  year={2008},
  doi={10.1007/s10955-008-9632-x},
  title={Sums of hermitian squares and the BMV conjecture},
  number={4},
  volume={133},
  issn={0022-4715},
  journal={Journal of Statistical Physics},
  pages={739--760},
  author={Klep, Igor and Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15620">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15620/1/bmv.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T09:23:01Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2008</dcterms:issued>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dcterms:title>Sums of hermitian squares and the BMV conjecture</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T09:23:01Z</dcterms:available>
    <dc:creator>Klep, Igor</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15620/1/bmv.pdf"/>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15620"/>
    <dcterms:bibliographicCitation>First publ. in: Journal of Statistical Physics 133 (2008), 4. - S. 739-760</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Abstract. We show that all the coe cients of the polynomial tr((A + tB)&lt;sup&gt;m&lt;/sup&gt;)	&amp;#8712; ℝ[t] are nonnegative whenever m &amp;#8804; 13 is a nonnegative integer and A and B are positive semide nite matrices of the same size. This has previously been known only for m &amp;#8804; 7. The validity of the statement for arbitrary m has recently been shown to be equivalent to the Bessis-Moussa-Villani conjecture from theoretical physics. In our proof, we establish a connection to sums of hermitian squares of polynomials in noncommuting variables and to semide nite programming. As a by-product we obtain an example of a real polynomial in two noncommuting variables having nonnegative trace on all symmetric matrices of the same size, yet not being a sum of hermitian squares and commutators.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed