Publikation: Non-simple polyominoes of Kőnig type and their canonical module
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2025
Autor:innen
Navarra, Francesco
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Algebra. Elsevier. 2025, 673, S. 351-384. ISSN 0021-8693. Verfügbar unter: doi: 10.1016/j.jalgebra.2025.02.034
Zusammenfassung
We study the Kőnig type property for non-simple polyominoes. We prove that, for closed path polyominoes, the polyomino ideals are of Konig type, extending the results of Herzog and Hibi for simple thin polyominoes. As an application of this result, we give a combinatorial interpretation for the canonical module of the coordinate ring of a sub-class of closed paths, namely circle closed path polyominoes. In this case, we compute also the Cohen-Macaulay type and we show that the coordinate ring is level.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Polyominoes, Binomial ideals, Krull dimension, Canonical module
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DINU, Rodica, Francesco NAVARRA, 2025. Non-simple polyominoes of Kőnig type and their canonical module. In: Journal of Algebra. Elsevier. 2025, 673, S. 351-384. ISSN 0021-8693. Verfügbar unter: doi: 10.1016/j.jalgebra.2025.02.034BibTex
@article{Dinu2025-07Nonsi-72896, title={Non-simple polyominoes of Kőnig type and their canonical module}, year={2025}, doi={10.1016/j.jalgebra.2025.02.034}, volume={673}, issn={0021-8693}, journal={Journal of Algebra}, pages={351--384}, author={Dinu, Rodica and Navarra, Francesco} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72896"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T09:53:37Z</dc:date> <dc:contributor>Dinu, Rodica</dc:contributor> <dc:creator>Navarra, Francesco</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T09:53:37Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72896"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:title>Non-simple polyominoes of Kőnig type and their canonical module</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract>We study the Kőnig type property for non-simple polyominoes. We prove that, for closed path polyominoes, the polyomino ideals are of Konig type, extending the results of Herzog and Hibi for simple thin polyominoes. As an application of this result, we give a combinatorial interpretation for the canonical module of the coordinate ring of a sub-class of closed paths, namely circle closed path polyominoes. In this case, we compute also the Cohen-Macaulay type and we show that the coordinate ring is level.</dcterms:abstract> <dc:creator>Dinu, Rodica</dc:creator> <dc:contributor>Navarra, Francesco</dc:contributor> <dcterms:issued>2025-07</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja