HyPlag : A Hybrid Approach to Academic Plagiarism Detection

Lade...
Vorschaubild
Dateien
Meuschke_2-g0zyf62y449c2.pdf
Meuschke_2-g0zyf62y449c2.pdfGröße: 281.2 KBDownloads: 1044
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval : SIGIR '18. New York, USA: ACM Press, 2018, pp. 1321-1324. ISBN 978-1-4503-5657-2. Available under: doi: 10.1145/3209978.3210177
Zusammenfassung

Current plagiarism detection systems reliably find instances of copied and moderately altered text, but often fail to detect strong paraphrases, translations, and the reuse of non-textual content and ideas. To improve upon the detection capabilities for such concealed content reuse in academic publications, we make four contributions: i) We present the first plagiarism detection approach that combines the analysis of mathematical expressions, images, citations and text. ii) We describe the implementation of this hybrid detection approach in the research prototype HyPlag. iii) We present novel visualization and interaction concepts to aid users in reviewing content similarities identified by the hybrid detection approach. iv) We demonstrate the usefulness of the hybrid detection and result visualization approaches by using HyPlag to analyze a confirmed case of content reuse present in a retracted research publication.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Plagiarism Detection, Document Retrieval, Mathematical Information Retrieval, Citation Analysis, Image Retrieval
Konferenz
SIGIR '18 : The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 8. Juli 2018 - 12. Juli 2018, Ann Arbor, MI, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MEUSCHKE, Norman, Vincent STANGE, Moritz SCHUBOTZ, Bela GIPP, 2018. HyPlag : A Hybrid Approach to Academic Plagiarism Detection. SIGIR '18 : The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor, MI, USA, 8. Juli 2018 - 12. Juli 2018. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval : SIGIR '18. New York, USA: ACM Press, 2018, pp. 1321-1324. ISBN 978-1-4503-5657-2. Available under: doi: 10.1145/3209978.3210177
BibTex
@inproceedings{Meuschke2018HyPla-43005,
  year={2018},
  doi={10.1145/3209978.3210177},
  title={HyPlag : A Hybrid Approach to Academic Plagiarism Detection},
  isbn={978-1-4503-5657-2},
  publisher={ACM Press},
  address={New York, USA},
  booktitle={The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval : SIGIR '18},
  pages={1321--1324},
  author={Meuschke, Norman and Stange, Vincent and Schubotz, Moritz and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43005">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43005/1/Meuschke_2-g0zyf62y449c2.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T14:36:55Z</dc:date>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Stange, Vincent</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43005/1/Meuschke_2-g0zyf62y449c2.pdf"/>
    <dcterms:title>HyPlag : A Hybrid Approach to Academic Plagiarism Detection</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T14:36:55Z</dcterms:available>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Gipp, Bela</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43005"/>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dcterms:abstract xml:lang="eng">Current plagiarism detection systems reliably find instances of copied and moderately altered text, but often fail to detect strong paraphrases, translations, and the reuse of non-textual content and ideas. To improve upon the detection capabilities for such concealed content reuse in academic publications, we make four contributions: i) We present the first plagiarism detection approach that combines the analysis of mathematical expressions, images, citations and text. ii) We describe the implementation of this hybrid detection approach in the research prototype HyPlag. iii) We present novel visualization and interaction concepts to aid users in reviewing content similarities identified by the hybrid detection approach. iv) We demonstrate the usefulness of the hybrid detection and result visualization approaches by using HyPlag to analyze a confirmed case of content reuse present in a retracted research publication.</dcterms:abstract>
    <dc:contributor>Stange, Vincent</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen