Publikation:

Challenges and opportunities for validation of AI-based new approach methods

Lade...
Vorschaubild

Dateien

Hartung_2-g1w6qkuwkidg4.pdf
Hartung_2-g1w6qkuwkidg4.pdfGröße: 1.44 MBDownloads: 25

Datum

2025

Autor:innen

Kleinstreuer, Nicole

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ALTEX : Alternatives to Animal Experimentation. Springer. 2025, 42(1), S. 3-21. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2412291

Zusammenfassung

The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep­resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance. We discuss key hurdles such as data quality, model interpretability, and regulatory acceptance, alongside opportunities including enhanced predictive power and efficient data integration. The concept of e-validation, an AI-powered framework for streamlining NAM validation, is presented as a comprehensive strategy to overcome limitations of traditional validation approaches, leveraging AI-powered modules for reference chemical selection, study simulation, mechanistic validation, and model training and evaluation. We propose robust validation strategies, including tiered approaches, performance benchmarking, uncertainty quantification, and cross-validation across diverse datasets. The importance of ongoing monitoring and refinement post-implementation is emphasized, addressing the dynamic nature of AI models. We consider ethical implications and the need for human oversight in AI-driven toxicology and outline the impact of trends in AI devel­opment, research priorities, and a vision for the integration of AI-based NAMs in toxicological practice, calling for collaboration among researchers, regulators, and industry stakeholders. We describe the vision of companion AI post-validation agents to keep methods and their validity status current. By addressing these challenges and opportunities, the scientific community can harness the potential of AI to enhance predictive toxicology while reducing reliance on traditional animal testing and increasing human relevance and translational capabilities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

artificial intelligence (AI), predictive toxicology, new approach methods (NAMs), validation, biomedical research, regulatory acceptance, chemical safety assessment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTUNG, Thomas, Nicole KLEINSTREUER, 2025. Challenges and opportunities for validation of AI-based new approach methods. In: ALTEX : Alternatives to Animal Experimentation. Springer. 2025, 42(1), S. 3-21. ISSN 1868-596X. eISSN 1868-8551. Verfügbar unter: doi: 10.14573/altex.2412291
BibTex
@article{Hartung2025Chall-72616,
  title={Challenges and opportunities for validation of AI-based new approach methods},
  year={2025},
  doi={10.14573/altex.2412291},
  number={1},
  volume={42},
  issn={1868-596X},
  journal={ALTEX : Alternatives to Animal Experimentation},
  pages={3--21},
  author={Hartung, Thomas and Kleinstreuer, Nicole}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72616">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:28:19Z</dc:date>
    <dc:contributor>Kleinstreuer, Nicole</dc:contributor>
    <dc:creator>Kleinstreuer, Nicole</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72616/1/Hartung_2-g1w6qkuwkidg4.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72616/1/Hartung_2-g1w6qkuwkidg4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72616"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dcterms:abstract>The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep­resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance. We discuss key hurdles such as data quality, model interpretability, and regulatory acceptance, alongside opportunities including enhanced predictive power and efficient data integration. The concept of e-validation, an AI-powered framework for streamlining NAM validation, is presented as a comprehensive strategy to overcome limitations of traditional validation approaches, leveraging AI-powered modules for reference chemical selection, study simulation, mechanistic validation, and model training and evaluation. We propose robust validation strategies, including tiered approaches, performance benchmarking, uncertainty quantification, and cross-validation across diverse datasets. The importance of ongoing monitoring and refinement post-implementation is emphasized, addressing the dynamic nature of AI models. We consider ethical implications and the need for human oversight in AI-driven toxicology and outline the impact of trends in AI devel­opment, research priorities, and a vision for the integration of AI-based NAMs in toxicological practice, calling for collaboration among researchers, regulators, and industry stakeholders. We describe the vision of companion AI post-validation agents to keep methods and their validity status current. By addressing these challenges and opportunities, the scientific community can harness the potential of AI to enhance predictive toxicology while reducing reliance on traditional animal testing and increasing human relevance and translational capabilities.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:28:19Z</dcterms:available>
    <dcterms:issued>2025</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Challenges and opportunities for validation of AI-based new approach methods</dcterms:title>
    <dc:creator>Hartung, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen