Fuzzy Information Granules in Time Series Data

Loading...
Thumbnail Image
Date
2004
Authors
Ortolani, Marco
Patterson, David
Höppner, Frank
Callan, Ondine
Hofer, Heiko
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
International Journal of Intelligent Systems ; 19 (2004), 7. - pp. 607-618. - ISSN 0884-8173. - eISSN 1098-111X
Abstract
Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERTHOLD, Michael R., Marco ORTOLANI, David PATTERSON, Frank HÖPPNER, Ondine CALLAN, Heiko HOFER, 2004. Fuzzy Information Granules in Time Series Data. In: International Journal of Intelligent Systems. 19(7), pp. 607-618. ISSN 0884-8173. eISSN 1098-111X. Available under: doi: 10.1002/int.20013
BibTex
@article{Berthold2004Fuzzy-24047,
  year={2004},
  doi={10.1002/int.20013},
  title={Fuzzy Information Granules in Time Series Data},
  number={7},
  volume={19},
  issn={0884-8173},
  journal={International Journal of Intelligent Systems},
  pages={607--618},
  author={Berthold, Michael R. and Ortolani, Marco and Patterson, David and Höppner, Frank and Callan, Ondine and Hofer, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24047">
    <dc:creator>Patterson, David</dc:creator>
    <dcterms:title>Fuzzy Information Granules in Time Series Data</dcterms:title>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dc:date>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dc:creator>Höppner, Frank</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ortolani, Marco</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hofer, Heiko</dc:creator>
    <dcterms:issued>2004</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Ortolani, Marco</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Callan, Ondine</dc:creator>
    <dc:contributor>Callan, Ondine</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.</dcterms:abstract>
    <dc:contributor>Hofer, Heiko</dc:contributor>
    <dcterms:bibliographicCitation>International Journal of Intelligent Systems ; 19 (2004), 7. - S. 607-618</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24047"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/>
    <dc:contributor>Patterson, David</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed