Fuzzy Information Granules in Time Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Marco ORTOLANI, David PATTERSON, Frank HÖPPNER, Ondine CALLAN, Heiko HOFER, 2004. Fuzzy Information Granules in Time Series Data. In: International Journal of Intelligent Systems. 2004, 19(7), pp. 607-618. ISSN 0884-8173. eISSN 1098-111X. Available under: doi: 10.1002/int.20013BibTex
@article{Berthold2004Fuzzy-24047, year={2004}, doi={10.1002/int.20013}, title={Fuzzy Information Granules in Time Series Data}, number={7}, volume={19}, issn={0884-8173}, journal={International Journal of Intelligent Systems}, pages={607--618}, author={Berthold, Michael R. and Ortolani, Marco and Patterson, David and Höppner, Frank and Callan, Ondine and Hofer, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24047"> <dc:creator>Patterson, David</dc:creator> <dcterms:title>Fuzzy Information Granules in Time Series Data</dcterms:title> <dc:creator>Berthold, Michael R.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dc:date> <dc:contributor>Höppner, Frank</dc:contributor> <dc:creator>Höppner, Frank</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Ortolani, Marco</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hofer, Heiko</dc:creator> <dcterms:issued>2004</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Ortolani, Marco</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Callan, Ondine</dc:creator> <dc:contributor>Callan, Ondine</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dcterms:available> <dcterms:abstract xml:lang="eng">Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.</dcterms:abstract> <dc:contributor>Hofer, Heiko</dc:contributor> <dcterms:bibliographicCitation>International Journal of Intelligent Systems ; 19 (2004), 7. - S. 607-618</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24047"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/> <dc:contributor>Patterson, David</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>