Publikation:

Fuzzy Information Granules in Time Series Data

Lade...
Vorschaubild

Dateien

Berthold_240478.pdf
Berthold_240478.pdfGröße: 318.74 KBDownloads: 304

Datum

2004

Autor:innen

Berthold, Michael R.
Ortolani, Marco
Patterson, David
Höppner, Frank
Callan, Ondine
Hofer, Heiko

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Intelligent Systems. 2004, 19(7), pp. 607-618. ISSN 0884-8173. eISSN 1098-111X. Available under: doi: 10.1002/int.20013

Zusammenfassung

Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., Marco ORTOLANI, David PATTERSON, Frank HÖPPNER, Ondine CALLAN, Heiko HOFER, 2004. Fuzzy Information Granules in Time Series Data. In: International Journal of Intelligent Systems. 2004, 19(7), pp. 607-618. ISSN 0884-8173. eISSN 1098-111X. Available under: doi: 10.1002/int.20013
BibTex
@article{Berthold2004Fuzzy-24047,
  year={2004},
  doi={10.1002/int.20013},
  title={Fuzzy Information Granules in Time Series Data},
  number={7},
  volume={19},
  issn={0884-8173},
  journal={International Journal of Intelligent Systems},
  pages={607--618},
  author={Berthold, Michael R. and Ortolani, Marco and Patterson, David and Höppner, Frank and Callan, Ondine and Hofer, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24047">
    <dc:creator>Patterson, David</dc:creator>
    <dcterms:title>Fuzzy Information Granules in Time Series Data</dcterms:title>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dc:date>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dc:creator>Höppner, Frank</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ortolani, Marco</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hofer, Heiko</dc:creator>
    <dcterms:issued>2004</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Ortolani, Marco</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Callan, Ondine</dc:creator>
    <dc:contributor>Callan, Ondine</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-24T07:35:17Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Often, it is desirable to represent a set of time series through typical shapes in order to detect common patterns. The algorithm presented here compares pieces of a different time series in order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means allows us to detect shapes that belong to a certain group of typical shapes with a degree of membership. Modifications to the original algorithm also allow this matching to be invariant with respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass spectrography. © 2004 Wiley Periodicals, Inc.</dcterms:abstract>
    <dc:contributor>Hofer, Heiko</dc:contributor>
    <dcterms:bibliographicCitation>International Journal of Intelligent Systems ; 19 (2004), 7. - S. 607-618</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24047"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24047/1/Berthold_240478.pdf"/>
    <dc:contributor>Patterson, David</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen