Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation

Loading...
Thumbnail Image
Date
2007
Authors
Catarci, Tiziana
Santucci, Giuseppe
Iervella, Gloria
Iannarelli, Stefano
Veltri, Fabio
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa
Abstract
In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Second Delos, Dec 5, 2007 - Dec 7, 2007, Tirrenia, Pisa
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CATARCI, Tiziana, Daniel A. KEIM, Giuseppe SANTUCCI, Tobias SCHRECK, Gloria IERVELLA, Stefano IANNARELLI, Fabio VELTRI, 2007. Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation. Second Delos. Tirrenia, Pisa, Dec 5, 2007 - Dec 7, 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa
BibTex
@inproceedings{Catarci2007Visua-5421,
  year={2007},
  title={Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation},
  booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa},
  author={Catarci, Tiziana and Keim, Daniel A. and Santucci, Giuseppe and Schreck, Tobias and Iervella, Gloria and Iannarelli, Stefano and Veltri, Fabio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5421">
    <dc:contributor>Iannarelli, Stefano</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Iannarelli, Stefano</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5421"/>
    <dc:creator>Catarci, Tiziana</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/>
    <dc:contributor>Iervella, Gloria</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation>
    <dc:contributor>Veltri, Fabio</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Iervella, Gloria</dc:creator>
    <dc:contributor>Santucci, Giuseppe</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Veltri, Fabio</dc:creator>
    <dcterms:abstract xml:lang="eng">In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.</dcterms:abstract>
    <dc:contributor>Catarci, Tiziana</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Santucci, Giuseppe</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed