Publikation: Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CATARCI, Tiziana, Daniel A. KEIM, Giuseppe SANTUCCI, Tobias SCHRECK, Gloria IERVELLA, Stefano IANNARELLI, Fabio VELTRI, 2007. Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation. Second Delos. Tirrenia, Pisa, 5. Dez. 2007 - 7. Dez. 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007BibTex
@inproceedings{Catarci2007Visua-5421, year={2007}, title={Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation}, booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa}, author={Catarci, Tiziana and Keim, Daniel A. and Santucci, Giuseppe and Schreck, Tobias and Iervella, Gloria and Iannarelli, Stefano and Veltri, Fabio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5421"> <dc:contributor>Iannarelli, Stefano</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:issued>2007</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Iannarelli, Stefano</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5421"/> <dc:creator>Catarci, Tiziana</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation</dcterms:title> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/> <dc:contributor>Iervella, Gloria</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation> <dc:contributor>Veltri, Fabio</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Iervella, Gloria</dc:creator> <dc:contributor>Santucci, Giuseppe</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Veltri, Fabio</dc:creator> <dcterms:abstract xml:lang="eng">In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.</dcterms:abstract> <dc:contributor>Catarci, Tiziana</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/> <dc:format>application/pdf</dc:format> <dc:creator>Santucci, Giuseppe</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available> </rdf:Description> </rdf:RDF>