Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation

Lade...
Vorschaubild
Dateien
delos_rankvis.pdf
delos_rankvis.pdfGröße: 1.53 MBDownloads: 142
Datum
2007
Autor:innen
Catarci, Tiziana
Santucci, Giuseppe
Iervella, Gloria
Iannarelli, Stefano
Veltri, Fabio
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007
Zusammenfassung

In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Second Delos, 5. Dez. 2007 - 7. Dez. 2007, Tirrenia, Pisa
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CATARCI, Tiziana, Daniel A. KEIM, Giuseppe SANTUCCI, Tobias SCHRECK, Gloria IERVELLA, Stefano IANNARELLI, Fabio VELTRI, 2007. Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation. Second Delos. Tirrenia, Pisa, 5. Dez. 2007 - 7. Dez. 2007. In: Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa. 2007
BibTex
@inproceedings{Catarci2007Visua-5421,
  year={2007},
  title={Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation},
  booktitle={Second Delos Conference On Digital Libraries 5 - 7 December 2007, Tirrenia, Pisa},
  author={Catarci, Tiziana and Keim, Daniel A. and Santucci, Giuseppe and Schreck, Tobias and Iervella, Gloria and Iannarelli, Stefano and Veltri, Fabio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5421">
    <dc:contributor>Iannarelli, Stefano</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Iannarelli, Stefano</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5421"/>
    <dc:creator>Catarci, Tiziana</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Visual Rank Analysis for Search Engine Benchmarking and Efficient Navigation</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/>
    <dc:contributor>Iervella, Gloria</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Second Delos Conference On Digital Libraries 5-7 December 2007, Tirrenia, Pisa</dcterms:bibliographicCitation>
    <dc:contributor>Veltri, Fabio</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Iervella, Gloria</dc:creator>
    <dc:contributor>Santucci, Giuseppe</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Veltri, Fabio</dc:creator>
    <dcterms:abstract xml:lang="eng">In many important applications, the search for non-standard data types is essential. E.g., digital libraries and multimedia database systems offer content-based search functionality for images and 3D documents. Contrary to the annotation-based approach, where information manually attached to the data objects if used for retrieval, in content-based retrieval, automatically derived meta-data is used. However, the quality of the meta data is crucial, and often, it a priori is not clear which meta data is best suited to execute a user-issued query. Owing to the multi-meta data problem, two crucial questions arise: (a) how can different meta data (feature vector) schemas be benchmarked to assess their suitability for solving the retrieval problem effectively, and (b) how to support the user with issuing queries to the retrieval system, considering different choices for the type of meta data to engage in the search. In this paper, we address these questions in a two-fold contribution. Based on the DARE visualization system, we first introduce an approach for the visual benchmarking of multiple meta data formats on a ground truth benchmark, supporting the optimization stage of the multimedia database design. We secondly propose a simple, yet effective visual interface to multiple, long lists (rankings) of answer objects for the user. The latter, based on relevance feedback information supplied by the user, allows the effective identification of the meta data schema best suited for executing the similarity queries at hand.</dcterms:abstract>
    <dc:contributor>Catarci, Tiziana</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5421/1/delos_rankvis.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Santucci, Giuseppe</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen