Dynamics of Voting Propensity : Experimental Tests of Adaptive Learning Models

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Kittel, Bernhard
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Political Research Quarterly. 2016, 69(4), pp. 813-829. ISSN 1065-9129. eISSN 1938-274X. Available under: doi: 10.1177/1065912916663654
Zusammenfassung

This paper aims to deliver experimental evidence on the dispute between two behavioral models of electoral turnout. Both models share the idea that the subjects’ voting propensities are updated from their past propensities, aspirations, and realized payoffs. However, they differ in the exact specification of the feedback mechanism. The first model has a strong feedback mechanism toward 50 percent, while the other has only moderate feedback. This difference leads to two distinct distributions of voter types: the first model generates more casual voters who vote and abstain from time to time. The latter generates more habitual voting behavior. Thus far, the latter model seemed to be better supported empirically because survey data reveal more habitual voters and abstainers than casual voters. Given that the two models differ in their propensity updating mechanism in dynamic processes, a more direct test of their assumptions as well as implications with survey data is still pending. We designed a laboratory experiment in which subjects repeatedly make turnout and voting decisions. The result from experimental data is mixed, but more supportive of the second model with habitual voters and abstainers.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
electoral turnout, adaptive learning models, laboratory experiment, agent-based modeling
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SHIKANO, Susumu, Bernhard KITTEL, 2016. Dynamics of Voting Propensity : Experimental Tests of Adaptive Learning Models. In: Political Research Quarterly. 2016, 69(4), pp. 813-829. ISSN 1065-9129. eISSN 1938-274X. Available under: doi: 10.1177/1065912916663654
BibTex
@article{Shikano2016-12-01Dynam-35783,
  year={2016},
  doi={10.1177/1065912916663654},
  title={Dynamics of Voting Propensity : Experimental Tests of Adaptive Learning Models},
  number={4},
  volume={69},
  issn={1065-9129},
  journal={Political Research Quarterly},
  pages={813--829},
  author={Shikano, Susumu and Kittel, Bernhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35783">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kittel, Bernhard</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-31T08:18:29Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-31T08:18:29Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper aims to deliver experimental evidence on the dispute between two behavioral models of electoral turnout. Both models share the idea that the subjects’ voting propensities are updated from their past propensities, aspirations, and realized payoffs. However, they differ in the exact specification of the feedback mechanism. The first model has a strong feedback mechanism toward 50 percent, while the other has only moderate feedback. This difference leads to two distinct distributions of voter types: the first model generates more casual voters who vote and abstain from time to time. The latter generates more habitual voting behavior. Thus far, the latter model seemed to be better supported empirically because survey data reveal more habitual voters and abstainers than casual voters. Given that the two models differ in their propensity updating mechanism in dynamic processes, a more direct test of their assumptions as well as implications with survey data is still pending. We designed a laboratory experiment in which subjects repeatedly make turnout and voting decisions. The result from experimental data is mixed, but more supportive of the second model with habitual voters and abstainers.</dcterms:abstract>
    <dc:creator>Shikano, Susumu</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Kittel, Bernhard</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35783"/>
    <dcterms:issued>2016-12-01</dcterms:issued>
    <dc:contributor>Shikano, Susumu</dc:contributor>
    <dcterms:title>Dynamics of Voting Propensity : Experimental Tests of Adaptive Learning Models</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen