Publikation:

Refining imprecise spatio-temporal events : a network-based approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Geiß, Johanna
Gertz, Michael
Hagedorn, Stefan
Sattler, Kai-Uwe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GIR '16 : Proceedings of the 10th Workshop on Geographic Information Retrieval. New York, NY: ACM, 2016, 5. ISBN 978-1-4503-4588-0. Available under: doi: 10.1145/3003464.3003469

Zusammenfassung

Events as composites of temporal, spatial and actor information are a central object of interest in many information retrieval (IR) scenarios. There are several challenges to such event-centric IR, which range from the detection and extraction of geographic, temporal and actor mentions in documents to the construction of event descriptions as triples of locations, dates, and actors that can support event query scenarios. For the latter challenge, existing approaches fall short when dealing with imprecise event components. For example, if the exact location or date is unknown, existing IR methods are often unaware of different granularity levels and the conceptual proximity of dates or locations. To address these problems, we present a framework that efficiently answers imprecise event queries, whose geographic or temporal component is given only at a coarse granularity level. Our approach utilizes a network-based event model that includes location, date, and actor components that are extracted from large document collections. Instances of entity and event mentions in the network are weighted based on both their frequency of occurrence and textual distance to reflect semantic relatedness. We demonstrate the utility and flexibility of our approach for evaluating imprecise event queries based on a large collection of events extracted from the English Wikipedia for a ground truth of news events.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Events; event representation; spatio-temporal information; information networks

Konferenz

GIR '16: 10th Workshop on Geographic Information Retrieval, 31. Okt. 2016, Burlingame, California, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPITZ, Andreas, Johanna GEISS, Michael GERTZ, Stefan HAGEDORN, Kai-Uwe SATTLER, 2016. Refining imprecise spatio-temporal events : a network-based approach. GIR '16: 10th Workshop on Geographic Information Retrieval. Burlingame, California, USA, 31. Okt. 2016. In: GIR '16 : Proceedings of the 10th Workshop on Geographic Information Retrieval. New York, NY: ACM, 2016, 5. ISBN 978-1-4503-4588-0. Available under: doi: 10.1145/3003464.3003469
BibTex
@inproceedings{Spitz2016Refin-55801,
  year={2016},
  doi={10.1145/3003464.3003469},
  title={Refining imprecise spatio-temporal events : a network-based approach},
  isbn={978-1-4503-4588-0},
  publisher={ACM},
  address={New York, NY},
  booktitle={GIR '16 : Proceedings of the 10th Workshop on Geographic Information Retrieval},
  author={Spitz, Andreas and Geiß, Johanna and Gertz, Michael and Hagedorn, Stefan and Sattler, Kai-Uwe},
  note={Article Number: 5}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55801">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55801"/>
    <dcterms:title>Refining imprecise spatio-temporal events : a network-based approach</dcterms:title>
    <dc:creator>Geiß, Johanna</dc:creator>
    <dc:contributor>Hagedorn, Stefan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T16:26:24Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Events as composites of temporal, spatial and actor information are a central object of interest in many information retrieval (IR) scenarios. There are several challenges to such event-centric IR, which range from the detection and extraction of geographic, temporal and actor mentions in documents to the construction of event descriptions as triples of locations, dates, and actors that can support event query scenarios. For the latter challenge, existing approaches fall short when dealing with imprecise event components. For example, if the exact location or date is unknown, existing IR methods are often unaware of different granularity levels and the conceptual proximity of dates or locations. To address these problems, we present a framework that efficiently answers imprecise event queries, whose geographic or temporal component is given only at a coarse granularity level. Our approach utilizes a network-based event model that includes location, date, and actor components that are extracted from large document collections. Instances of entity and event mentions in the network are weighted based on both their frequency of occurrence and textual distance to reflect semantic relatedness. We demonstrate the utility and flexibility of our approach for evaluating imprecise event queries based on a large collection of events extracted from the English Wikipedia for a ground truth of news events.</dcterms:abstract>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T16:26:24Z</dc:date>
    <dc:creator>Sattler, Kai-Uwe</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Geiß, Johanna</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Sattler, Kai-Uwe</dc:contributor>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hagedorn, Stefan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen