Publikation:

Visual sentiment analysis on Twitter data streams

Lade...
Vorschaubild

Dateien

Hao_190485.pdf
Hao_190485.pdfGröße: 1.12 MBDownloads: 2893

Datum

2011

Autor:innen

Hao, Ming
Dayal, Umeshwar
Haug, Lars-Erik
Hsu, Mei-Chun

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2011, pp. 277-278. ISBN 978-1-4673-0015-5. Available under: doi: 10.1109/VAST.2011.6102472

Zusammenfassung

Twitter currently receives about 190 million tweets (small textbased Web posts) a day, in which people share their comments regarding a wide range of topics. A large number of tweets include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for evaluating customer sentiment. To explore high-volume twitter data, we introduce three novel timebased visual sentiment analysis techniques: (1) topic-based sentiment analysis that extracts, maps, and measures customer opinions; (2) stream analysis that identifies interesting tweets based on their density, negativity, and influence characteristics; and (3) pixel cell-based sentiment calendars and high density geo maps that visualize large volumes of data in a single view. We applied these techniques to a variety of twitter data, (e.g., movies, amusement parks, and hotels) to show their distribution and patterns, and to identify influential opinions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2011 IEEE Conference on Visual Analytics Science and Technology (VAST), 23. Okt. 2011 - 28. Okt. 2011, Providence, RI, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming, Christian ROHRDANTZ, Halldor JANETZKO, Umeshwar DAYAL, Daniel A. KEIM, Lars-Erik HAUG, Mei-Chun HSU, 2011. Visual sentiment analysis on Twitter data streams. 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). Providence, RI, USA, 23. Okt. 2011 - 28. Okt. 2011. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2011, pp. 277-278. ISBN 978-1-4673-0015-5. Available under: doi: 10.1109/VAST.2011.6102472
BibTex
@inproceedings{Hao2011-10Visua-19048,
  year={2011},
  doi={10.1109/VAST.2011.6102472},
  title={Visual sentiment analysis on Twitter data streams},
  isbn={978-1-4673-0015-5},
  publisher={IEEE},
  booktitle={2011 IEEE Conference on Visual Analytics Science and Technology (VAST)},
  pages={277--278},
  author={Hao, Ming and Rohrdantz, Christian and Janetzko, Halldor and Dayal, Umeshwar and Keim, Daniel A. and Haug, Lars-Erik and Hsu, Mei-Chun}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19048">
    <dc:creator>Haug, Lars-Erik</dc:creator>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hsu, Mei-Chun</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual sentiment analysis on Twitter data streams</dcterms:title>
    <dcterms:issued>2011-10</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="deu">Twitter currently receives about 190 million tweets (small textbased Web posts) a day, in which people share their comments regarding a wide range of topics. A large number of tweets include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for evaluating customer sentiment. To explore high-volume twitter data, we introduce three novel timebased visual sentiment analysis techniques: (1) topic-based sentiment analysis that extracts, maps, and measures customer opinions; (2) stream analysis that identifies interesting tweets based on their density, negativity, and influence characteristics; and (3) pixel cell-based sentiment calendars and high density geo maps that visualize large volumes of data in a single view. We applied these techniques to a variety of twitter data, (e.g., movies, amusement parks, and hotels) to show their distribution and patterns, and to identify influential opinions.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19048"/>
    <dc:creator>Hsu, Mei-Chun</dc:creator>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Haug, Lars-Erik</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19048/2/Hao_190485.pdf"/>
    <dc:creator>Hao, Ming</dc:creator>
    <dc:contributor>Hao, Ming</dc:contributor>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:47:49Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19048/2/Hao_190485.pdf"/>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:bibliographicCitation>2011 IEEE Conference on Visual Analytics Science and Technology (VAST 2011) : Proceedings of a meeting held 23-28 October 2011, Providence, Rhode Island, USA / Miksch, Silvia... (Ed.). - Piscataway : IEEE, 2011. - S. 275-276. - ISBN 978-1-4673-0015-5</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:47:49Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen