Publikation: Visual sentiment analysis on Twitter data streams
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Twitter currently receives about 190 million tweets (small textbased Web posts) a day, in which people share their comments regarding a wide range of topics. A large number of tweets include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for evaluating customer sentiment. To explore high-volume twitter data, we introduce three novel timebased visual sentiment analysis techniques: (1) topic-based sentiment analysis that extracts, maps, and measures customer opinions; (2) stream analysis that identifies interesting tweets based on their density, negativity, and influence characteristics; and (3) pixel cell-based sentiment calendars and high density geo maps that visualize large volumes of data in a single view. We applied these techniques to a variety of twitter data, (e.g., movies, amusement parks, and hotels) to show their distribution and patterns, and to identify influential opinions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming, Christian ROHRDANTZ, Halldor JANETZKO, Umeshwar DAYAL, Daniel A. KEIM, Lars-Erik HAUG, Mei-Chun HSU, 2011. Visual sentiment analysis on Twitter data streams. 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). Providence, RI, USA, 23. Okt. 2011 - 28. Okt. 2011. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2011, pp. 277-278. ISBN 978-1-4673-0015-5. Available under: doi: 10.1109/VAST.2011.6102472BibTex
@inproceedings{Hao2011-10Visua-19048, year={2011}, doi={10.1109/VAST.2011.6102472}, title={Visual sentiment analysis on Twitter data streams}, isbn={978-1-4673-0015-5}, publisher={IEEE}, booktitle={2011 IEEE Conference on Visual Analytics Science and Technology (VAST)}, pages={277--278}, author={Hao, Ming and Rohrdantz, Christian and Janetzko, Halldor and Dayal, Umeshwar and Keim, Daniel A. and Haug, Lars-Erik and Hsu, Mei-Chun} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19048"> <dc:creator>Haug, Lars-Erik</dc:creator> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Dayal, Umeshwar</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hsu, Mei-Chun</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual sentiment analysis on Twitter data streams</dcterms:title> <dcterms:issued>2011-10</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="deu">Twitter currently receives about 190 million tweets (small textbased Web posts) a day, in which people share their comments regarding a wide range of topics. A large number of tweets include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for evaluating customer sentiment. To explore high-volume twitter data, we introduce three novel timebased visual sentiment analysis techniques: (1) topic-based sentiment analysis that extracts, maps, and measures customer opinions; (2) stream analysis that identifies interesting tweets based on their density, negativity, and influence characteristics; and (3) pixel cell-based sentiment calendars and high density geo maps that visualize large volumes of data in a single view. We applied these techniques to a variety of twitter data, (e.g., movies, amusement parks, and hotels) to show their distribution and patterns, and to identify influential opinions.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19048"/> <dc:creator>Hsu, Mei-Chun</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Haug, Lars-Erik</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19048/2/Hao_190485.pdf"/> <dc:creator>Hao, Ming</dc:creator> <dc:contributor>Hao, Ming</dc:contributor> <dc:creator>Dayal, Umeshwar</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:47:49Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19048/2/Hao_190485.pdf"/> <dc:creator>Janetzko, Halldor</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dcterms:bibliographicCitation>2011 IEEE Conference on Visual Analytics Science and Technology (VAST 2011) : Proceedings of a meeting held 23-28 October 2011, Providence, Rhode Island, USA / Miksch, Silvia... (Ed.). - Piscataway : IEEE, 2011. - S. 275-276. - ISBN 978-1-4673-0015-5</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:47:49Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>