Publikation:

Connes' embedding conjectures and sums of hermitian squares

Lade...
Vorschaubild

Dateien

connes.pdf
connes.pdfGröße: 1.63 MBDownloads: 188

Datum

2008

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Mathematics. 2008, 217(4), pp. 1816-1837. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2007.09.016

Zusammenfassung

We show that Connes' embedding conjecture on von Neumann algebras is equivalent to the existence of certain algebraic certificates for a polynomial in noncommuting variables to satisfy the following nonnegativity condition: The trace is nonnegative whenever self-adjoint contraction matrices of the same size are substituted for the variables. These algebraic certificates involve sums of hermitian squares and commutators. We prove that they always exist for a similar nonnegativity condition where elements of separable II1-factors are considered instead of matrices. Under the presence of Connes' conjecture, we derive degree bounds for the certificates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

sum of squares, Connes’ embedding conjecture, quadratic module, tracial state, von Neumann algebra.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLEP, Igor, Markus SCHWEIGHOFER, 2008. Connes' embedding conjectures and sums of hermitian squares. In: Advances in Mathematics. 2008, 217(4), pp. 1816-1837. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2007.09.016
BibTex
@article{Klep2008Conne-15621,
  year={2008},
  doi={10.1016/j.aim.2007.09.016},
  title={Connes' embedding conjectures and sums of hermitian squares},
  number={4},
  volume={217},
  issn={0001-8708},
  journal={Advances in Mathematics},
  pages={1816--1837},
  author={Klep, Igor and Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15621">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15621/1/connes.pdf"/>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dcterms:abstract xml:lang="eng">We show that Connes' embedding conjecture on von Neumann algebras is equivalent to the existence of certain algebraic certificates for a polynomial in noncommuting variables to satisfy the following nonnegativity condition: The trace is nonnegative whenever self-adjoint contraction matrices of the same size are substituted for the variables. These algebraic certificates involve sums of hermitian squares and commutators. We prove that they always exist for a similar nonnegativity condition where elements of separable II&lt;sub&gt;1&lt;/sub&gt;-factors are considered instead of matrices. Under the presence of Connes' conjecture, we derive degree bounds for the certificates.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T08:44:23Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T08:44:23Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Advances in Mathematics 217 (2008), 4. - S. 1816-1837</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15621/1/connes.pdf"/>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2008</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15621"/>
    <dcterms:title>Connes' embedding conjectures and sums of hermitian squares</dcterms:title>
    <dc:creator>Klep, Igor</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen