Publikation:

GRIT : A Dataset of Group Reference Recognition in Italian

Lade...
Vorschaubild

Dateien

Zanotto_2-h04ti6mdrhbu3.pdf
Zanotto_2-h04ti6mdrhbu3.pdfGröße: 295.24 KBDownloads: 9

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC-2035/1– 390681379

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CALZOLARI, Nicoletta, Hrsg., Min-Yen KAN, Hrsg., Veronique HOSTE, Hrsg. und andere. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). ACL, 2024, S. 7963-7970

Zusammenfassung

For the analysis of political discourse a reliable identification of group references, i.e., linguistic components that refer to individuals or groups of people, is useful. However, the task of automatically recognizing group references has not yet gained much attention within NLP. To address this gap, we introduce GRIT (Group Reference for Italian), a large-scale, multi-domain manually annotated dataset for group reference recognition in Italian. GRIT represents a new resource for automatic and generalizable recognition of group references. With this dataset, we aim to establish group reference recognition as a valid classification task, which extends the domain of Named Entity Recognition by expanding its focus to literal and figurative mentions of social groups. We verify the potential of achieving automated group reference recognition for Italian through an experiment employing a fine-tuned BERT model. Our experimental results substantiate the validity of the task, implying a huge potential for applying automated systems to multiple fields of analysis, such as political text or social media analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

group reference recognition, NLP for social sciences, Italian language resource

Konferenz

The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 20. Mai 2024 - 25. Mai 2024, Torino, Italia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZANOTTO, Sergio, Qi YU, Miriam BUTT, Diego FRASSINELLI, 2024. GRIT : A Dataset of Group Reference Recognition in Italian. The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Torino, Italia, 20. Mai 2024 - 25. Mai 2024. In: CALZOLARI, Nicoletta, Hrsg., Min-Yen KAN, Hrsg., Veronique HOSTE, Hrsg. und andere. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). ACL, 2024, S. 7963-7970
BibTex
@inproceedings{Zanotto2024Datas-71000,
  year={2024},
  title={GRIT : A Dataset of Group Reference Recognition in Italian},
  url={https://aclanthology.org/2024.lrec-main.701},
  publisher={ACL},
  booktitle={Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
  pages={7963--7970},
  editor={Calzolari, Nicoletta and Kan, Min-Yen and Hoste, Veronique},
  author={Zanotto, Sergio and Yu, Qi and Butt, Miriam and Frassinelli, Diego}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71000">
    <dc:creator>Butt, Miriam</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-18T07:06:03Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71000"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-18T07:06:03Z</dc:date>
    <dc:creator>Frassinelli, Diego</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:creator>Zanotto, Sergio</dc:creator>
    <dc:creator>Yu, Qi</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71000/4/Zanotto_2-h04ti6mdrhbu3.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71000/4/Zanotto_2-h04ti6mdrhbu3.pdf"/>
    <dcterms:abstract>For the analysis of political discourse a reliable identification of group references, i.e., linguistic components that refer to individuals or groups of people, is useful. However, the task of automatically recognizing group references has not yet gained much attention within NLP. To address this gap, we introduce GRIT (Group Reference for Italian), a large-scale, multi-domain manually annotated dataset for group reference recognition in Italian. GRIT represents a new resource for automatic and generalizable recognition of group references. With this dataset, we aim to establish group reference recognition as a valid classification task, which extends the domain of Named Entity Recognition by expanding its focus to literal and figurative mentions of social groups. We verify the potential of achieving automated group reference recognition for Italian through an experiment employing a fine-tuned BERT model. Our experimental results substantiate the validity of the task, implying a huge potential for applying automated systems to multiple fields of analysis, such as political text or social media analysis.</dcterms:abstract>
    <dc:contributor>Frassinelli, Diego</dc:contributor>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:contributor>Yu, Qi</dc:contributor>
    <dc:contributor>Zanotto, Sergio</dc:contributor>
    <dcterms:title>GRIT : A Dataset of Group Reference Recognition in Italian</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2024-08-06

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen