Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Most of the world’s animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6, 7, 8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time—which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features—has been suggested to improve sensitivity in theoretical [12, 13, 14], anatomical [15, 16, 17], and behavioral [18, 19, 20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21].
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STÖCKL, Anna L., David Charles O’CARROLL, Eric James WARRANT, 2016. Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light. In: Current Biology. Cell Press. 2016, 26(6), S. 821-826. ISSN 0960-9822. eISSN 1879-0445. Verfügbar unter: doi: 10.1016/j.cub.2016.01.030BibTex
@article{Stockl2016Neura-60009, year={2016}, doi={10.1016/j.cub.2016.01.030}, title={Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light}, number={6}, volume={26}, issn={0960-9822}, journal={Current Biology}, pages={821--826}, author={Stöckl, Anna L. and O’Carroll, David Charles and Warrant, Eric James} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/60009"> <dcterms:title>Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-31T12:40:35Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/60009"/> <dc:creator>Warrant, Eric James</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60009/1/Stoeckl_2-h2qofn5u0mpl0.pdf"/> <dc:contributor>O’Carroll, David Charles</dc:contributor> <dc:creator>O’Carroll, David Charles</dc:creator> <dc:contributor>Warrant, Eric James</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-31T12:40:35Z</dc:date> <dcterms:issued>2016</dcterms:issued> <dcterms:abstract xml:lang="eng">Most of the world’s animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6, 7, 8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time—which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features—has been suggested to improve sensitivity in theoretical [12, 13, 14], anatomical [15, 16, 17], and behavioral [18, 19, 20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21].</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Stöckl, Anna L.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60009/1/Stoeckl_2-h2qofn5u0mpl0.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Stöckl, Anna L.</dc:contributor> </rdf:Description> </rdf:RDF>