Publikation: A structurally damped plate equation with Dirichlet-Neumann boundary conditions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate sectoriality and maximal regularity in Lp-Lq-Sobolev spaces for the structurally damped plate equation with Dirichlet-Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C4.
It turns out that the first-order system related to the scalar equation on Rn is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Roland SCHNAUBELT, 2014. A structurally damped plate equation with Dirichlet-Neumann boundary conditionsBibTex
@techreport{Denk2014struc-29060, year={2014}, series={Konstanzer Schriften in Mathematik}, title={A structurally damped plate equation with Dirichlet-Neumann boundary conditions}, number={330}, author={Denk, Robert and Schnaubelt, Roland} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29060"> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Denk, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29060/3/Denk_0-253353.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-02T08:24:53Z</dcterms:available> <dc:creator>Schnaubelt, Roland</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29060/3/Denk_0-253353.pdf"/> <dc:contributor>Schnaubelt, Roland</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Denk, Robert</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29060"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>A structurally damped plate equation with Dirichlet-Neumann boundary conditions</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-02T08:24:53Z</dc:date> <dcterms:abstract xml:lang="eng">We investigate sectoriality and maximal regularity in L<sup>p</sup>-L<sup>q</sup>-Sobolev spaces for the structurally damped plate equation with Dirichlet-Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C<sup>4</sup>.<br /><br /><br /><br />It turns out that the first-order system related to the scalar equation on R<sup>n</sup> is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.</dcterms:abstract> </rdf:Description> </rdf:RDF>