Publikation:

Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Lade...
Vorschaubild

Dateien

preprint_135.pdf
preprint_135.pdfGröße: 281.55 KBDownloads: 432

Datum

2000

Autor:innen

Galiano, Gonzalo
Garzón, María L.
Jüngel, Ansgar

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690GALIANO, Gonzalo, María L. GARZÓN, Ansgar JÜNGEL, 2000. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
BibTex
@unpublished{Galiano2000Semid-6298,
  year={2000},
  title={Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model},
  author={Galiano, Gonzalo and Garzón, María L. and Jüngel, Ansgar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6298">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Garzón, María L.</dc:contributor>
    <dc:creator>Jüngel, Ansgar</dc:creator>
    <dc:creator>Garzón, María L.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Galiano, Gonzalo</dc:contributor>
    <dcterms:issued>2000</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Jüngel, Ansgar</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6298"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dc:date>
    <dcterms:title>Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Galiano, Gonzalo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen