Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2000
Autor:innen
Galiano, Gonzalo
Garzón, María L.
Jüngel, Ansgar
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GALIANO, Gonzalo, María L. GARZÓN, Ansgar JÜNGEL, 2000. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
BibTex
@unpublished{Galiano2000Semid-6298,
  year={2000},
  title={Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model},
  author={Galiano, Gonzalo and Garzón, María L. and Jüngel, Ansgar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6298">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Garzón, María L.</dc:contributor>
    <dc:creator>Jüngel, Ansgar</dc:creator>
    <dc:creator>Garzón, María L.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Galiano, Gonzalo</dc:contributor>
    <dcterms:issued>2000</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Jüngel, Ansgar</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6298"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dc:date>
    <dcterms:title>Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Galiano, Gonzalo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen