Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Loading...
Thumbnail Image
Date
2000
Authors
Galiano, Gonzalo
Garzón, María L.
Jüngel, Ansgar
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 135
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690GALIANO, Gonzalo, María L. GARZÓN, Ansgar JÜNGEL, 2000. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
BibTex
@unpublished{Galiano2000Semid-6298,
  year={2000},
  title={Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model},
  author={Galiano, Gonzalo and Garzón, María L. and Jüngel, Ansgar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6298">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Garzón, María L.</dc:contributor>
    <dc:creator>Jüngel, Ansgar</dc:creator>
    <dc:creator>Garzón, María L.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Galiano, Gonzalo</dc:contributor>
    <dcterms:issued>2000</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/>
    <dc:contributor>Jüngel, Ansgar</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6298"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dc:date>
    <dcterms:title>Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Galiano, Gonzalo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed