Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
Loading...
Date
2000
Authors
Galiano, Gonzalo
Garzón, María L.
Jüngel, Ansgar
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 135
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
GALIANO, Gonzalo, María L. GARZÓN, Ansgar JÜNGEL, 2000. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population modelBibTex
@unpublished{Galiano2000Semid-6298, year={2000}, title={Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model}, author={Galiano, Gonzalo and Garzón, María L. and Jüngel, Ansgar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6298"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/> <dc:contributor>Garzón, María L.</dc:contributor> <dc:creator>Jüngel, Ansgar</dc:creator> <dc:creator>Garzón, María L.</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Galiano, Gonzalo</dc:contributor> <dcterms:issued>2000</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6298/1/preprint_135.pdf"/> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6298"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dc:date> <dcterms:title>Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model</dcterms:title> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Galiano, Gonzalo</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>