The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement

Lade...
Vorschaubild
Dateien
Rogers_0-291150.pdf
Rogers_0-291150.pdfGröße: 696.88 KBDownloads: 284
Datum
2015
Autor:innen
Rogers, Shelley
Puddick, Jonathan
Wood, Susanna A.
Hamilton, David P.
Prinsep, Michele R.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Toxins. 2015, 7(3), pp. 821-834. eISSN 2072-6651. Available under: doi: 10.3390/toxins7030821
Zusammenfassung

Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures) and with biomass enrichment (by centrifugation or GF/C filtration). After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
microcystin; cyanobacteria; microcystis; planktothrix; biomass concentration; sample processing
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ROGERS, Shelley, Jonathan PUDDICK, Susanna A. WOOD, Daniel R. DIETRICH, David P. HAMILTON, Michele R. PRINSEP, 2015. The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement. In: Toxins. 2015, 7(3), pp. 821-834. eISSN 2072-6651. Available under: doi: 10.3390/toxins7030821
BibTex
@article{Rogers2015Effec-31512,
  year={2015},
  doi={10.3390/toxins7030821},
  title={The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement},
  number={3},
  volume={7},
  journal={Toxins},
  pages={821--834},
  author={Rogers, Shelley and Puddick, Jonathan and Wood, Susanna A. and Dietrich, Daniel R. and Hamilton, David P. and Prinsep, Michele R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31512">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-29T04:34:24Z</dcterms:available>
    <dc:contributor>Dietrich, Daniel R.</dc:contributor>
    <dc:creator>Dietrich, Daniel R.</dc:creator>
    <dc:creator>Wood, Susanna A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures) and with biomass enrichment (by centrifugation or GF/C filtration). After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.</dcterms:abstract>
    <dcterms:title>The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-29T04:34:24Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31512/1/Rogers_0-291150.pdf"/>
    <dc:contributor>Rogers, Shelley</dc:contributor>
    <dc:creator>Hamilton, David P.</dc:creator>
    <dc:contributor>Wood, Susanna A.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Rogers, Shelley</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Prinsep, Michele R.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31512/1/Rogers_0-291150.pdf"/>
    <dc:contributor>Hamilton, David P.</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Prinsep, Michele R.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31512"/>
    <dc:creator>Puddick, Jonathan</dc:creator>
    <dc:contributor>Puddick, Jonathan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen