Publikation:

Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of VisxAI : Workshop on Visualization for AI Explainability. 2018

Zusammenfassung

Projections are some of the most common methods for presenting high-dimensional datasets on a 2D display. While these techniques provide overviews that highlight relations between observations, they are unavoidably subject to change depending on chosen configurations. Hence, the same projection technique can depict multiple compositions of the same dataset, depending on its parameter setting. Furthermore, projection techniques differ in their underlying assumptions and computation mechanisms, favoring the preservation of either distances, neighborhoods, or dimensions. This article aims to shed light on the similarities and differences of a multitude of projection techniques, the influence of features and parameters on data-representations, and give a data-driven intuition on the relation of projections. We postulate that, depending on the task and data, a different choice of projection technique, or a combination of such, might lead to a more effective view.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

VisxAI : Workshop on Visualization for AI Explainability, 22. Okt. 2018, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STREEB, Dirk, Rebecca KEHLBECK, Dominik JÄCKLE, Mennatallah EL-ASSADY, 2018. Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data. VisxAI : Workshop on Visualization for AI Explainability. Berlin, 22. Okt. 2018. In: Proceedings of VisxAI : Workshop on Visualization for AI Explainability. 2018
BibTex
@inproceedings{Streeb2018Dista-45031,
  year={2018},
  title={Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data},
  url={https://visxprojections.dbvis.de/client/index.html},
  booktitle={Proceedings of VisxAI : Workshop on Visualization for AI Explainability},
  author={Streeb, Dirk and Kehlbeck, Rebecca and Jäckle, Dominik and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45031">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T10:51:49Z</dcterms:available>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dcterms:abstract xml:lang="eng">Projections are some of the most common methods for presenting high-dimensional datasets on a 2D display. While these techniques provide overviews that highlight relations between observations, they are unavoidably subject to change depending on chosen configurations. Hence, the same projection technique can depict multiple compositions of the same dataset, depending on its parameter setting. Furthermore, projection techniques differ in their underlying assumptions and computation mechanisms, favoring the preservation of either distances, neighborhoods, or dimensions. This article aims to shed light on the similarities and differences of a multitude of projection techniques, the influence of features and parameters on data-representations, and give a data-driven intuition on the relation of projections. We postulate that, depending on the task and data, a different choice of projection technique, or a combination of such, might lead to a more effective view.</dcterms:abstract>
    <dc:creator>Streeb, Dirk</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:title>Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T10:51:49Z</dc:date>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45031"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-02-14

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen