Galois theory over rings of arithmetic power series
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Paran, Elad
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Mathematics. 2011, 226(5), pp. 4183-4197. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2010.11.010
Zusammenfassung
Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0<r<1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FEHM, Arno, Elad PARAN, 2011. Galois theory over rings of arithmetic power series. In: Advances in Mathematics. 2011, 226(5), pp. 4183-4197. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2010.11.010BibTex
@article{Fehm2011Galoi-14818, year={2011}, doi={10.1016/j.aim.2010.11.010}, title={Galois theory over rings of arithmetic power series}, number={5}, volume={226}, issn={0001-8708}, journal={Advances in Mathematics}, pages={4183--4197}, author={Fehm, Arno and Paran, Elad} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14818"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-17T07:30:33Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0<r<1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-17T07:30:33Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Paran, Elad</dc:contributor> <dc:contributor>Fehm, Arno</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14818"/> <dcterms:bibliographicCitation>Publ. in: Advances in Mathematics 226 (2011), 5, pp. 4183-4197</dcterms:bibliographicCitation> <dc:creator>Paran, Elad</dc:creator> <dc:creator>Fehm, Arno</dc:creator> <dcterms:issued>2011</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Galois theory over rings of arithmetic power series</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja