Publikation:

Galois theory over rings of arithmetic power series

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Paran, Elad

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Mathematics. 2011, 226(5), pp. 4183-4197. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2010.11.010

Zusammenfassung

Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0<r<1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEHM, Arno, Elad PARAN, 2011. Galois theory over rings of arithmetic power series. In: Advances in Mathematics. 2011, 226(5), pp. 4183-4197. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2010.11.010
BibTex
@article{Fehm2011Galoi-14818,
  year={2011},
  doi={10.1016/j.aim.2010.11.010},
  title={Galois theory over rings of arithmetic power series},
  number={5},
  volume={226},
  issn={0001-8708},
  journal={Advances in Mathematics},
  pages={4183--4197},
  author={Fehm, Arno and Paran, Elad}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14818">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-17T07:30:33Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0&lt;r&lt;1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-17T07:30:33Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Paran, Elad</dc:contributor>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14818"/>
    <dcterms:bibliographicCitation>Publ. in: Advances in Mathematics 226 (2011), 5, pp. 4183-4197</dcterms:bibliographicCitation>
    <dc:creator>Paran, Elad</dc:creator>
    <dc:creator>Fehm, Arno</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Galois theory over rings of arithmetic power series</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen