Shadows of graphical mean curvature flow
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Analysis and Geometry. International Press. 2021, 29(1), pp. 183-206. ISSN 1019-8385. eISSN 1944-9992. Available under: doi: 10.4310/CAG.2021.v29.n1.a6
Zusammenfassung
We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in Rn. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto Rn, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in Rn with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MAURER, Wolfgang, 2021. Shadows of graphical mean curvature flow. In: Communications in Analysis and Geometry. International Press. 2021, 29(1), pp. 183-206. ISSN 1019-8385. eISSN 1944-9992. Available under: doi: 10.4310/CAG.2021.v29.n1.a6BibTex
@article{Maurer2021Shado-53443, year={2021}, doi={10.4310/CAG.2021.v29.n1.a6}, title={Shadows of graphical mean curvature flow}, number={1}, volume={29}, issn={1019-8385}, journal={Communications in Analysis and Geometry}, pages={183--206}, author={Maurer, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53443"> <dcterms:issued>2021</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53443"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Maurer, Wolfgang</dc:contributor> <dcterms:title>Shadows of graphical mean curvature flow</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dc:date> <dcterms:abstract xml:lang="eng">We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in R<sup>n</sup>. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto R<sup>n</sup>, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in R<sup>n</sup> with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dcterms:available> <dc:creator>Maurer, Wolfgang</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt