Shadows of graphical mean curvature flow

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Analysis and Geometry. International Press. 2021, 29(1), pp. 183-206. ISSN 1019-8385. eISSN 1944-9992. Available under: doi: 10.4310/CAG.2021.v29.n1.a6
Zusammenfassung

We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in Rn. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto Rn, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in Rn with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MAURER, Wolfgang, 2021. Shadows of graphical mean curvature flow. In: Communications in Analysis and Geometry. International Press. 2021, 29(1), pp. 183-206. ISSN 1019-8385. eISSN 1944-9992. Available under: doi: 10.4310/CAG.2021.v29.n1.a6
BibTex
@article{Maurer2021Shado-53443,
  year={2021},
  doi={10.4310/CAG.2021.v29.n1.a6},
  title={Shadows of graphical mean curvature flow},
  number={1},
  volume={29},
  issn={1019-8385},
  journal={Communications in Analysis and Geometry},
  pages={183--206},
  author={Maurer, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53443">
    <dcterms:issued>2021</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53443"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Maurer, Wolfgang</dc:contributor>
    <dcterms:title>Shadows of graphical mean curvature flow</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dc:date>
    <dcterms:abstract xml:lang="eng">We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in R&lt;sup&gt;n&lt;/sup&gt;. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto R&lt;sup&gt;n&lt;/sup&gt;, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in R&lt;sup&gt;n&lt;/sup&gt; with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dcterms:available>
    <dc:creator>Maurer, Wolfgang</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen