Shadows of graphical mean curvature flow

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Communications in Analysis and Geometry ; 29 (2021), 1. - pp. 183-206. - International Press. - ISSN 1019-8385. - eISSN 1944-9992
Abstract
We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in Rn. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto Rn, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in Rn with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690MAURER, Wolfgang, 2021. Shadows of graphical mean curvature flow. In: Communications in Analysis and Geometry. International Press. 29(1), pp. 183-206. ISSN 1019-8385. eISSN 1944-9992. Available under: doi: 10.4310/CAG.2021.v29.n1.a6
BibTex
@article{Maurer2021Shado-53443,
  year={2021},
  doi={10.4310/CAG.2021.v29.n1.a6},
  title={Shadows of graphical mean curvature flow},
  number={1},
  volume={29},
  issn={1019-8385},
  journal={Communications in Analysis and Geometry},
  pages={183--206},
  author={Maurer, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53443">
    <dcterms:issued>2021</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53443"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Maurer, Wolfgang</dc:contributor>
    <dcterms:title>Shadows of graphical mean curvature flow</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dc:date>
    <dcterms:abstract xml:lang="eng">We consider mean curvature flow of an initial surface that is the graph of a function over some domain of definition in R&lt;sup&gt;n&lt;/sup&gt;. If the graph is not complete then we impose a constant Dirichlet boundary condition at the boundary of the surface.We establish longtime-existence of the flow and investigate the projection of the flowing surface onto R&lt;sup&gt;n&lt;/sup&gt;, the shadow of the flow. This moving shadow can be seen as a weak solution for mean curvature flow of hypersurfaces in R&lt;sup&gt;n&lt;/sup&gt; with a Dirichlet boundary condition. Furthermore, we provide a lemma of independent interest to locally mollify the boundary of an intersection of two smooth open sets in a way that respects curvature conditions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T09:56:28Z</dcterms:available>
    <dc:creator>Maurer, Wolfgang</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown