Publikation:

Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes

Lade...
Vorschaubild

Dateien

Affentranger_2-hkzc2xea1aqr0.pdf
Affentranger_2-hkzc2xea1aqr0.pdfGröße: 5.59 MBDownloads: 241

Datum

2011

Autor:innen

Affentranger, Sarah
Martinelli, Sibylla
Hahn, Jonas
Niggli, Verena

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

BMC cell biology. 2011, 12, 28. eISSN 1471-2121. Available under: doi: 10.1186/1471-2121-12-28

Zusammenfassung

Background:
Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.

Results:
We studied flotillin reorganization and lateral mobility at the plasma membrane using immunofluorescence staining and FRAP (fluorescence recovery after photobleaching). We show that flotillins redistribute early upon chemokine stimulation, and form very stable caps in the uropods of human peripheral blood T-lymphocytes, colocalizing with the adhesion molecule PSGL-1 and activated ezrin/radixin/moesin (ERM) proteins. Chemokine-induced formation of stable flotillin caps requires integrity and dynamics of the actin cytoskeleton, but is not abolished by inhibitors suppressing Rho-kinase or myosin II activity. Tagged flotillin-2 and flotillin-1 coexpressed in T-lymphocytes, but not singly expressed proteins, colocalize in stable caps at the tips of uropods. Lateral mobility of coexpressed flotillins at the plasma membrane is already partially restricted in the absence of chemokine. Incubation with chemokine results in almost complete immobilization of flotillins. Capping is abolished when wild-type flotillin-1 is coexpressed with a mutant of flotillin-2 (G2A) that is unable to interact with the plasma membrane, or with a deletion mutant of flotillin-2 that lacks a putative actin-binding domain. Wild-type flotillin-2 in contrast forms caps when coexpressed with a mutant of flotillin-1 unable to interact with membranes. Transfection of T-lymphocytes with flotillin-2-G2A reduces cell polarization and uropod recruitment of endogenous flotillin-1 and PSGL-1.

Conclusions:
Our data suggest that stable flotillin cap formation in the rear of polarized T-lymphocytes requires flotillin heterooligomer formation, as well as direct F-actin interactions of flotillin-2 and raft/membrane association of flotillin-2, but not -1. Our data also implicate flotillin-rich actin-dependent membrane microdomains in T-lymphocyte uropod formation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Fluorescence Recovery After Photobleaching, Membrane Microdomains, Blebbistatin, Lateral Mobility, Jasplakinolide

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AFFENTRANGER, Sarah, Sibylla MARTINELLI, Jonas HAHN, Jérémie ROSSY, Verena NIGGLI, 2011. Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. In: BMC cell biology. 2011, 12, 28. eISSN 1471-2121. Available under: doi: 10.1186/1471-2121-12-28
BibTex
@article{Affentranger2011Dynam-43474,
  year={2011},
  doi={10.1186/1471-2121-12-28},
  title={Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes},
  volume={12},
  journal={BMC cell biology},
  author={Affentranger, Sarah and Martinelli, Sibylla and Hahn, Jonas and Rossy, Jérémie and Niggli, Verena},
  note={Article Number: 28}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43474">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43474/3/Affentranger_2-hkzc2xea1aqr0.pdf"/>
    <dcterms:title>Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43474"/>
    <dc:contributor>Affentranger, Sarah</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Affentranger, Sarah</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-10T09:15:43Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hahn, Jonas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43474/3/Affentranger_2-hkzc2xea1aqr0.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-10T09:15:43Z</dc:date>
    <dc:contributor>Niggli, Verena</dc:contributor>
    <dc:contributor>Martinelli, Sibylla</dc:contributor>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Background:&lt;br /&gt;Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.&lt;br /&gt;&lt;br /&gt;Results:&lt;br /&gt;We studied flotillin reorganization and lateral mobility at the plasma membrane using immunofluorescence staining and FRAP (fluorescence recovery after photobleaching). We show that flotillins redistribute early upon chemokine stimulation, and form very stable caps in the uropods of human peripheral blood T-lymphocytes, colocalizing with the adhesion molecule PSGL-1 and activated ezrin/radixin/moesin (ERM) proteins. Chemokine-induced formation of stable flotillin caps requires integrity and dynamics of the actin cytoskeleton, but is not abolished by inhibitors suppressing Rho-kinase or myosin II activity. Tagged flotillin-2 and flotillin-1 coexpressed in T-lymphocytes, but not singly expressed proteins, colocalize in stable caps at the tips of uropods. Lateral mobility of coexpressed flotillins at the plasma membrane is already partially restricted in the absence of chemokine. Incubation with chemokine results in almost complete immobilization of flotillins. Capping is abolished when wild-type flotillin-1 is coexpressed with a mutant of flotillin-2 (G2A) that is unable to interact with the plasma membrane, or with a deletion mutant of flotillin-2 that lacks a putative actin-binding domain. Wild-type flotillin-2 in contrast forms caps when coexpressed with a mutant of flotillin-1 unable to interact with membranes. Transfection of T-lymphocytes with flotillin-2-G2A reduces cell polarization and uropod recruitment of endogenous flotillin-1 and PSGL-1.&lt;br /&gt;&lt;br /&gt;Conclusions:&lt;br /&gt;Our data suggest that stable flotillin cap formation in the rear of polarized T-lymphocytes requires flotillin heterooligomer formation, as well as direct F-actin interactions of flotillin-2 and raft/membrane association of flotillin-2, but not -1. Our data also implicate flotillin-rich actin-dependent membrane microdomains in T-lymphocyte uropod formation.</dcterms:abstract>
    <dc:creator>Rossy, Jérémie</dc:creator>
    <dc:creator>Martinelli, Sibylla</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hahn, Jonas</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Rossy, Jérémie</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Niggli, Verena</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen