Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes

Lade...
Vorschaubild
Dateien
Affentranger_2-hkzc2xea1aqr0.pdf
Affentranger_2-hkzc2xea1aqr0.pdfGröße: 5.59 MBDownloads: 213
Datum
2011
Autor:innen
Affentranger, Sarah
Martinelli, Sibylla
Hahn, Jonas
Niggli, Verena
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
BMC cell biology. 2011, 12, 28. eISSN 1471-2121. Available under: doi: 10.1186/1471-2121-12-28
Zusammenfassung

Background:
Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.

Results:
We studied flotillin reorganization and lateral mobility at the plasma membrane using immunofluorescence staining and FRAP (fluorescence recovery after photobleaching). We show that flotillins redistribute early upon chemokine stimulation, and form very stable caps in the uropods of human peripheral blood T-lymphocytes, colocalizing with the adhesion molecule PSGL-1 and activated ezrin/radixin/moesin (ERM) proteins. Chemokine-induced formation of stable flotillin caps requires integrity and dynamics of the actin cytoskeleton, but is not abolished by inhibitors suppressing Rho-kinase or myosin II activity. Tagged flotillin-2 and flotillin-1 coexpressed in T-lymphocytes, but not singly expressed proteins, colocalize in stable caps at the tips of uropods. Lateral mobility of coexpressed flotillins at the plasma membrane is already partially restricted in the absence of chemokine. Incubation with chemokine results in almost complete immobilization of flotillins. Capping is abolished when wild-type flotillin-1 is coexpressed with a mutant of flotillin-2 (G2A) that is unable to interact with the plasma membrane, or with a deletion mutant of flotillin-2 that lacks a putative actin-binding domain. Wild-type flotillin-2 in contrast forms caps when coexpressed with a mutant of flotillin-1 unable to interact with membranes. Transfection of T-lymphocytes with flotillin-2-G2A reduces cell polarization and uropod recruitment of endogenous flotillin-1 and PSGL-1.

Conclusions:
Our data suggest that stable flotillin cap formation in the rear of polarized T-lymphocytes requires flotillin heterooligomer formation, as well as direct F-actin interactions of flotillin-2 and raft/membrane association of flotillin-2, but not -1. Our data also implicate flotillin-rich actin-dependent membrane microdomains in T-lymphocyte uropod formation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Fluorescence Recovery After Photobleaching, Membrane Microdomains, Blebbistatin, Lateral Mobility, Jasplakinolide
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690AFFENTRANGER, Sarah, Sibylla MARTINELLI, Jonas HAHN, Jérémie ROSSY, Verena NIGGLI, 2011. Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. In: BMC cell biology. 2011, 12, 28. eISSN 1471-2121. Available under: doi: 10.1186/1471-2121-12-28
BibTex
@article{Affentranger2011Dynam-43474,
  year={2011},
  doi={10.1186/1471-2121-12-28},
  title={Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes},
  volume={12},
  journal={BMC cell biology},
  author={Affentranger, Sarah and Martinelli, Sibylla and Hahn, Jonas and Rossy, Jérémie and Niggli, Verena},
  note={Article Number: 28}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43474">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43474/3/Affentranger_2-hkzc2xea1aqr0.pdf"/>
    <dcterms:title>Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43474"/>
    <dc:contributor>Affentranger, Sarah</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Affentranger, Sarah</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-10T09:15:43Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hahn, Jonas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43474/3/Affentranger_2-hkzc2xea1aqr0.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-10T09:15:43Z</dc:date>
    <dc:contributor>Niggli, Verena</dc:contributor>
    <dc:contributor>Martinelli, Sibylla</dc:contributor>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Background:&lt;br /&gt;Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.&lt;br /&gt;&lt;br /&gt;Results:&lt;br /&gt;We studied flotillin reorganization and lateral mobility at the plasma membrane using immunofluorescence staining and FRAP (fluorescence recovery after photobleaching). We show that flotillins redistribute early upon chemokine stimulation, and form very stable caps in the uropods of human peripheral blood T-lymphocytes, colocalizing with the adhesion molecule PSGL-1 and activated ezrin/radixin/moesin (ERM) proteins. Chemokine-induced formation of stable flotillin caps requires integrity and dynamics of the actin cytoskeleton, but is not abolished by inhibitors suppressing Rho-kinase or myosin II activity. Tagged flotillin-2 and flotillin-1 coexpressed in T-lymphocytes, but not singly expressed proteins, colocalize in stable caps at the tips of uropods. Lateral mobility of coexpressed flotillins at the plasma membrane is already partially restricted in the absence of chemokine. Incubation with chemokine results in almost complete immobilization of flotillins. Capping is abolished when wild-type flotillin-1 is coexpressed with a mutant of flotillin-2 (G2A) that is unable to interact with the plasma membrane, or with a deletion mutant of flotillin-2 that lacks a putative actin-binding domain. Wild-type flotillin-2 in contrast forms caps when coexpressed with a mutant of flotillin-1 unable to interact with membranes. Transfection of T-lymphocytes with flotillin-2-G2A reduces cell polarization and uropod recruitment of endogenous flotillin-1 and PSGL-1.&lt;br /&gt;&lt;br /&gt;Conclusions:&lt;br /&gt;Our data suggest that stable flotillin cap formation in the rear of polarized T-lymphocytes requires flotillin heterooligomer formation, as well as direct F-actin interactions of flotillin-2 and raft/membrane association of flotillin-2, but not -1. Our data also implicate flotillin-rich actin-dependent membrane microdomains in T-lymphocyte uropod formation.</dcterms:abstract>
    <dc:creator>Rossy, Jérémie</dc:creator>
    <dc:creator>Martinelli, Sibylla</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hahn, Jonas</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Rossy, Jérémie</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Niggli, Verena</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja