Publikation:

Flag matroids : algebra and geometry

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Cameron, Amanda
Seynnaeve, Tim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CAMERON, Amanda, Rodica DINU, Mateusz MICHALEK, Tim SEYNNAEVE, 2018. Flag matroids : algebra and geometry
BibTex
@unpublished{Cameron2018matro-55481,
  year={2018},
  title={Flag matroids : algebra and geometry},
  author={Cameron, Amanda and Dinu, Rodica and Michalek, Mateusz and Seynnaeve, Tim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55481">
    <dc:contributor>Dinu, Rodica</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Cameron, Amanda</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Cameron, Amanda</dc:creator>
    <dcterms:abstract xml:lang="eng">Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.</dcterms:abstract>
    <dc:creator>Seynnaeve, Tim</dc:creator>
    <dcterms:title>Flag matroids : algebra and geometry</dcterms:title>
    <dc:creator>Dinu, Rodica</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Seynnaeve, Tim</dc:contributor>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55481"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen