Flag matroids : algebra and geometry
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAMERON, Amanda, Rodica DINU, Mateusz MICHALEK, Tim SEYNNAEVE, 2018. Flag matroids : algebra and geometryBibTex
@unpublished{Cameron2018matro-55481, year={2018}, title={Flag matroids : algebra and geometry}, author={Cameron, Amanda and Dinu, Rodica and Michalek, Mateusz and Seynnaeve, Tim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55481"> <dc:contributor>Dinu, Rodica</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Cameron, Amanda</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Cameron, Amanda</dc:creator> <dcterms:abstract xml:lang="eng">Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.</dcterms:abstract> <dc:creator>Seynnaeve, Tim</dc:creator> <dcterms:title>Flag matroids : algebra and geometry</dcterms:title> <dc:creator>Dinu, Rodica</dc:creator> <dcterms:issued>2018</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Seynnaeve, Tim</dc:contributor> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55481"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>