Flag matroids : algebra and geometry

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Cameron, Amanda
Seynnaeve, Tim
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690CAMERON, Amanda, Rodica DINU, Mateusz MICHALEK, Tim SEYNNAEVE, 2018. Flag matroids : algebra and geometry
BibTex
@unpublished{Cameron2018matro-55481,
  year={2018},
  title={Flag matroids : algebra and geometry},
  author={Cameron, Amanda and Dinu, Rodica and Michalek, Mateusz and Seynnaeve, Tim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55481">
    <dc:contributor>Dinu, Rodica</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Cameron, Amanda</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Cameron, Amanda</dc:creator>
    <dcterms:abstract xml:lang="eng">Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.</dcterms:abstract>
    <dc:creator>Seynnaeve, Tim</dc:creator>
    <dcterms:title>Flag matroids : algebra and geometry</dcterms:title>
    <dc:creator>Dinu, Rodica</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Seynnaeve, Tim</dc:contributor>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55481"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen