Volatility forecasting using global stochastic financial trends extracted from non-synchronous data
Volatility forecasting using global stochastic financial trends extracted from non-synchronous data
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Econometrics and Statistics ; 5 (2018). - S. 67-82. - eISSN 2452-3062
Zusammenfassung
A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Multivariate volatility modeling and forecasting Global stochastic trend Extended Kalman filter Dynamic conditional correlations (DCC) Non-synchronous data
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, Anatoly PERESETSKY, 2018. Volatility forecasting using global stochastic financial trends extracted from non-synchronous data. In: Econometrics and Statistics. 5, pp. 67-82. eISSN 2452-3062. Available under: doi: 10.1016/j.ecosta.2017.01.003BibTex
@article{Grigoryeva2018-01Volat-41245, year={2018}, doi={10.1016/j.ecosta.2017.01.003}, title={Volatility forecasting using global stochastic financial trends extracted from non-synchronous data}, volume={5}, journal={Econometrics and Statistics}, pages={67--82}, author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo and Peresetsky, Anatoly} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41245"> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Peresetsky, Anatoly</dc:creator> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dcterms:available> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41245"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Volatility forecasting using global stochastic financial trends extracted from non-synchronous data</dcterms:title> <dc:contributor>Peresetsky, Anatoly</dc:contributor> <dcterms:issued>2018-01</dcterms:issued> <dcterms:abstract xml:lang="eng">A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja