Volatility forecasting using global stochastic financial trends extracted from non-synchronous data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, Anatoly PERESETSKY, 2018. Volatility forecasting using global stochastic financial trends extracted from non-synchronous data. In: Econometrics and Statistics. 2018, 5, pp. 67-82. eISSN 2452-3062. Available under: doi: 10.1016/j.ecosta.2017.01.003BibTex
@article{Grigoryeva2018-01Volat-41245, year={2018}, doi={10.1016/j.ecosta.2017.01.003}, title={Volatility forecasting using global stochastic financial trends extracted from non-synchronous data}, volume={5}, journal={Econometrics and Statistics}, pages={67--82}, author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo and Peresetsky, Anatoly} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41245"> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Peresetsky, Anatoly</dc:creator> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dcterms:available> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41245"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Volatility forecasting using global stochastic financial trends extracted from non-synchronous data</dcterms:title> <dc:contributor>Peresetsky, Anatoly</dc:contributor> <dcterms:issued>2018-01</dcterms:issued> <dcterms:abstract xml:lang="eng">A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.</dcterms:abstract> </rdf:Description> </rdf:RDF>