Publikation:

Volatility forecasting using global stochastic financial trends extracted from non-synchronous data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Ortega, Juan-Pablo
Peresetsky, Anatoly

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Econometrics and Statistics. 2018, 5, pp. 67-82. eISSN 2452-3062. Available under: doi: 10.1016/j.ecosta.2017.01.003

Zusammenfassung

A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multivariate volatility modeling and forecasting Global stochastic trend Extended Kalman filter Dynamic conditional correlations (DCC) Non-synchronous data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, Anatoly PERESETSKY, 2018. Volatility forecasting using global stochastic financial trends extracted from non-synchronous data. In: Econometrics and Statistics. 2018, 5, pp. 67-82. eISSN 2452-3062. Available under: doi: 10.1016/j.ecosta.2017.01.003
BibTex
@article{Grigoryeva2018-01Volat-41245,
  year={2018},
  doi={10.1016/j.ecosta.2017.01.003},
  title={Volatility forecasting using global stochastic financial trends extracted from non-synchronous data},
  volume={5},
  journal={Econometrics and Statistics},
  pages={67--82},
  author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo and Peresetsky, Anatoly}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41245">
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Peresetsky, Anatoly</dc:creator>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dcterms:available>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:01:33Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41245"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Volatility forecasting using global stochastic financial trends extracted from non-synchronous data</dcterms:title>
    <dc:contributor>Peresetsky, Anatoly</dc:contributor>
    <dcterms:issued>2018-01</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A method based on various linear and nonlinear state space models used to extract global stochastic financial trends (GST) out of non-synchronous financial data is introduced. These models are constructed in order to take advantage of the intraday arrival of closing information coming from different international markets so that volatility description and forecasting is improved. A set of three major asynchronous international stock market indices is considered in order to empirically show that this forecasting scheme is capable of significant performance gains when compared to standard parametric models like the dynamic conditional correlation (DCC) family.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen