Shot retrieval based on fuzzy evolutionary aiNet and hybrid features
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
As the multimedia data increasing exponentially, how to get the video data we need efficiently become so important and urgent. In this paper, a novel method for shot retrieval is proposed, which is based on fuzzy evolutionary aiNet and hybrid features. To begin with, the fuzzy evolutionary aiNet algorithm proposed in this paper is utilized to extract key-frames in a video sequence. Meanwhile, to represent a key-frame, hybrid features of color feature, texture feature and spatial structure feature are extracted. Then, the features of key-frames in the same shot are taken as an ensemble and mapped to high dimension space by non-linear mapping, and the result obeys Gaussian distribution. Finally, shot similarity is measured by the probabilistic distance between distributions of the key-frame feature ensembles for two shots, and similar shots are retrieved effectively by using this method. Experimental results show the validity of this proposed method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Xiang-Hui, Yong-Zhao ZHAN, Jia KE, Hongwei ZHENG, 2011. Shot retrieval based on fuzzy evolutionary aiNet and hybrid features. In: Computers in Human Behavior. 2011, 27(5), pp. 1571-1578. ISSN 0747-5632. Available under: doi: 10.1016/j.chb.2010.11.002BibTex
@article{Li2011retri-16627, year={2011}, doi={10.1016/j.chb.2010.11.002}, title={Shot retrieval based on fuzzy evolutionary aiNet and hybrid features}, number={5}, volume={27}, issn={0747-5632}, journal={Computers in Human Behavior}, pages={1571--1578}, author={Li, Xiang-Hui and Zhan, Yong-Zhao and Ke, Jia and Zheng, Hongwei} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16627"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T17:12:49Z</dc:date> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16627/2/shot_retrieval.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-09-30T22:25:05Z</dcterms:available> <dc:contributor>Zheng, Hongwei</dc:contributor> <dc:creator>Zheng, Hongwei</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Zhan, Yong-Zhao</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Li, Xiang-Hui</dc:contributor> <dcterms:bibliographicCitation>Computers in Human Behavior ; 27 (2011), 5. - S. 1571-1578</dcterms:bibliographicCitation> <dc:creator>Ke, Jia</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16627/2/shot_retrieval.pdf"/> <dcterms:title>Shot retrieval based on fuzzy evolutionary aiNet and hybrid features</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ke, Jia</dc:contributor> <dc:creator>Li, Xiang-Hui</dc:creator> <dcterms:issued>2011</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16627"/> <dc:creator>Zhan, Yong-Zhao</dc:creator> <dcterms:abstract xml:lang="eng">As the multimedia data increasing exponentially, how to get the video data we need efficiently become so important and urgent. In this paper, a novel method for shot retrieval is proposed, which is based on fuzzy evolutionary aiNet and hybrid features. To begin with, the fuzzy evolutionary aiNet algorithm proposed in this paper is utilized to extract key-frames in a video sequence. Meanwhile, to represent a key-frame, hybrid features of color feature, texture feature and spatial structure feature are extracted. Then, the features of key-frames in the same shot are taken as an ensemble and mapped to high dimension space by non-linear mapping, and the result obeys Gaussian distribution. Finally, shot similarity is measured by the probabilistic distance between distributions of the key-frame feature ensembles for two shots, and similar shots are retrieved effectively by using this method. Experimental results show the validity of this proposed method.</dcterms:abstract> </rdf:Description> </rdf:RDF>