Visual sentiment analysis of customer feedback streams using geo-temporal term associations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore high-volume customer feedback streams, in this article, we introduce four time series visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel way of determining term associations that identify attributes, verbs, and adjectives frequently occurring together; (3) a self-organizing term association map and a pixel cell–based sentiment calendar to identify co-occurring and influential opinion; and (4) a new geo-based term association technique providing a key term geo map to enable the user to inspect the statistical significance and the sentiment distribution of individual key terms. We have used and evaluated these techniques and combined them into a well-fitted solution for an effective analysis of large customer feedback streams such as web surveys (from product buyers) and Twitter (e.g. from Kung-Fu Panda movie reviewers).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Christian ROHRDANTZ, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Lars Erik HAUG, Meichun HSU, Florian STOFFEL, 2013. Visual sentiment analysis of customer feedback streams using geo-temporal term associations. In: Information Visualization. 2013, 12(3-4), pp. 273-290. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613481691BibTex
@article{Hao2013Visua-24781, year={2013}, doi={10.1177/1473871613481691}, title={Visual sentiment analysis of customer feedback streams using geo-temporal term associations}, number={3-4}, volume={12}, issn={1473-8716}, journal={Information Visualization}, pages={273--290}, author={Hao, Ming C. and Rohrdantz, Christian and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Haug, Lars Erik and Hsu, Meichun and Stoffel, Florian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24781"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-09T11:15:46Z</dc:date> <dc:creator>Stoffel, Florian</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Janetzko, Halldor</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24781"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore high-volume customer feedback streams, in this article, we introduce four time series visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel way of determining term associations that identify attributes, verbs, and adjectives frequently occurring together; (3) a self-organizing term association map and a pixel cell–based sentiment calendar to identify co-occurring and influential opinion; and (4) a new geo-based term association technique providing a key term geo map to enable the user to inspect the statistical significance and the sentiment distribution of individual key terms. We have used and evaluated these techniques and combined them into a well-fitted solution for an effective analysis of large customer feedback streams such as web surveys (from product buyers) and Twitter (e.g. from Kung-Fu Panda movie reviewers).</dcterms:abstract> <dc:creator>Hsu, Meichun</dc:creator> <dc:creator>Haug, Lars Erik</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24781/1/Information%20Visualization_273%20edit.pdf"/> <dc:creator>Rohrdantz, Christian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24781/1/Information%20Visualization_273%20edit.pdf"/> <dc:creator>Hao, Ming C.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:issued>2013</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dcterms:title>Visual sentiment analysis of customer feedback streams using geo-temporal term associations</dcterms:title> <dcterms:bibliographicCitation>Information Visualization ; 12 (2013), 3-4. - S. 273-290</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-30T22:25:07Z</dcterms:available> <dc:contributor>Haug, Lars Erik</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:contributor>Hsu, Meichun</dc:contributor> </rdf:Description> </rdf:RDF>