Visual sentiment analysis of customer feedback streams using geo-temporal term associations

Lade...
Vorschaubild
Dateien
Information Visualization_273 edit.pdf
Information Visualization_273 edit.pdfGröße: 1.01 MBDownloads: 600
Datum
2013
Autor:innen
Hao, Ming C.
Dayal, Umeshwar
Haug, Lars Erik
Hsu, Meichun
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Visualization. 2013, 12(3-4), pp. 273-290. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613481691
Zusammenfassung

Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore high-volume customer feedback streams, in this article, we introduce four time series visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel way of determining term associations that identify attributes, verbs, and adjectives frequently occurring together; (3) a self-organizing term association map and a pixel cell–based sentiment calendar to identify co-occurring and influential opinion; and (4) a new geo-based term association technique providing a key term geo map to enable the user to inspect the statistical significance and the sentiment distribution of individual key terms. We have used and evaluated these techniques and combined them into a well-fitted solution for an effective analysis of large customer feedback streams such as web surveys (from product buyers) and Twitter (e.g. from Kung-Fu Panda movie reviewers).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HAO, Ming C., Christian ROHRDANTZ, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Lars Erik HAUG, Meichun HSU, Florian STOFFEL, 2013. Visual sentiment analysis of customer feedback streams using geo-temporal term associations. In: Information Visualization. 2013, 12(3-4), pp. 273-290. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613481691
BibTex
@article{Hao2013Visua-24781,
  year={2013},
  doi={10.1177/1473871613481691},
  title={Visual sentiment analysis of customer feedback streams using geo-temporal term associations},
  number={3-4},
  volume={12},
  issn={1473-8716},
  journal={Information Visualization},
  pages={273--290},
  author={Hao, Ming C. and Rohrdantz, Christian and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Haug, Lars Erik and Hsu, Meichun and Stoffel, Florian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24781">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-09T11:15:46Z</dc:date>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24781"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore high-volume customer feedback streams, in this article, we introduce four time series visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel way of determining term associations that identify attributes, verbs, and adjectives frequently occurring together; (3) a self-organizing term association map and a pixel cell–based sentiment calendar to identify co-occurring and influential opinion; and (4) a new geo-based term association technique providing a key term geo map to enable the user to inspect the statistical significance and the sentiment distribution of individual key terms. We have used and evaluated these techniques and combined them into a well-fitted solution for an effective analysis of large customer feedback streams such as web surveys (from product buyers) and Twitter (e.g. from Kung-Fu Panda movie reviewers).</dcterms:abstract>
    <dc:creator>Hsu, Meichun</dc:creator>
    <dc:creator>Haug, Lars Erik</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24781/1/Information%20Visualization_273%20edit.pdf"/>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24781/1/Information%20Visualization_273%20edit.pdf"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:title>Visual sentiment analysis of customer feedback streams using geo-temporal term associations</dcterms:title>
    <dcterms:bibliographicCitation>Information Visualization ; 12 (2013), 3-4. - S. 273-290</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-30T22:25:07Z</dcterms:available>
    <dc:contributor>Haug, Lars Erik</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:contributor>Hsu, Meichun</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen