Tetrahedral meshing via maximal Poisson-disk sampling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GUO, Jianwei, Dong-Ming YAN, Li CHEN, Xiaopeng ZHANG, Oliver DEUSSEN, Peter WONKA, 2016. Tetrahedral meshing via maximal Poisson-disk sampling. In: Computer Aided Geometric Design. 2016, 43, pp. 186-199. ISSN 0167-8396. eISSN 1879-2332. Available under: doi: 10.1016/j.cagd.2016.02.004BibTex
@article{Guo2016-02Tetra-33525, year={2016}, doi={10.1016/j.cagd.2016.02.004}, title={Tetrahedral meshing via maximal Poisson-disk sampling}, volume={43}, issn={0167-8396}, journal={Computer Aided Geometric Design}, pages={186--199}, author={Guo, Jianwei and Yan, Dong-Ming and Chen, Li and Zhang, Xiaopeng and Deussen, Oliver and Wonka, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33525"> <dcterms:issued>2016-02</dcterms:issued> <dc:creator>Yan, Dong-Ming</dc:creator> <dc:contributor>Guo, Jianwei</dc:contributor> <dc:creator>Zhang, Xiaopeng</dc:creator> <dc:contributor>Chen, Li</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33525/1/Guo_0-324779.pdf"/> <dc:creator>Chen, Li</dc:creator> <dcterms:abstract xml:lang="eng">In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Guo, Jianwei</dc:creator> <dc:creator>Deussen, Oliver</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33525/1/Guo_0-324779.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-01T07:55:35Z</dcterms:available> <dc:contributor>Zhang, Xiaopeng</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-01T07:55:35Z</dc:date> <dc:contributor>Yan, Dong-Ming</dc:contributor> <dcterms:title>Tetrahedral meshing via maximal Poisson-disk sampling</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Wonka, Peter</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Deussen, Oliver</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33525"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wonka, Peter</dc:creator> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>